IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v105y2022ics014098832100565x.html
   My bibliography  Save this article

Is smart transportation associated with reduced carbon emissions? The case of China

Author

Listed:
  • Zhao, Congyu
  • Wang, Kun
  • Dong, Xiucheng
  • Dong, Kangyin

Abstract

The greenhouse effects of the transportation sector are quite significant as the sector essentially consumes a lot of fossil fuels. To reduce this sector's carbon dioxide (CO2) emissions and achieve carbon neutrality, developing smart transportation has emerged as a promising approach. Accordingly, by employing spatial econometric models, we study the impact of smart transportation on CO2 emissions in China. For this purpose, we first assess smart transportation levels in the 30 Chinese provinces for the period 2002–2017. The results indicate that the overall level of smart transportation displays a significant upward trend, and regional heterogeneity exists. Also, a significant spatial spillover effect is found between smart transportation and CO2 emissions in China, implying that a province's carbon mitigation not only depends on the development of its own smart transportation, but also on that of neighboring provinces. Smart transportation can inhibit the CO2 emissions significantly in not only the transportation but also non-transportation sectors. Furthermore, in addition to the direct mitigation effect, smart transportation can also indirectly affect CO2 emissions through transportation scale, structure, and technology effects. The findings of this paper therefore add to the existing literature and provide important policy implications for promoting smart transportation and curbing CO2 emissions in the transportation and other sectors.

Suggested Citation

  • Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
  • Handle: RePEc:eee:eneeco:v:105:y:2022:i:c:s014098832100565x
    DOI: 10.1016/j.eneco.2021.105715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832100565X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jianghui & Liu, Jinping & Tseng, Fang-Mei, 2020. "An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    2. Haug, Alfred A. & Ucal, Meltem, 2019. "The role of trade and FDI for CO2 emissions in Turkey: Nonlinear relationships," Energy Economics, Elsevier, vol. 81(C), pages 297-307.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Shahbaz, Muhammad & Mallick, Hrushikesh & Mahalik, Mantu Kumar & Sadorsky, Perry, 2016. "The role of globalization on the recent evolution of energy demand in India: Implications for sustainable development," Energy Economics, Elsevier, vol. 55(C), pages 52-68.
    5. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
    6. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    7. Shahbaz, Muhammad & Nasir, Muhammad Ali & Hille, Erik & Mahalik, Mantu Kumar, 2020. "UK's net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017)," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Yang Chen & Arturo Ardila-Gomez & Gladys Frame, 2016. "Achieving Energy Savings by Intelligent Transportation Systems Investments in the Context of Smart Cities," World Bank Publications - Reports 24740, The World Bank Group.
    9. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    10. Chang, Victor, 2021. "An ethical framework for big data and smart cities," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    11. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    12. Huynh, Toan Luu Duc & Hille, Erik & Nasir, Muhammad Ali, 2020. "Diversification in the age of the 4th industrial revolution: The role of artificial intelligence, green bonds and cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    13. Gudmundsson, Henrik & Hojer, Mattias, 1996. "Sustainable development principles and their implications for transport," Ecological Economics, Elsevier, vol. 19(3), pages 269-282, December.
    14. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    15. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    16. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    17. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    18. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).
    19. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    20. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    21. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    22. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    23. Scholl, Lynn & Schipper, Lee & Kiang, Nancy, 1996. "CO2 emissions from passenger transport : A comparison of international trends from 1973 to 1992," Energy Policy, Elsevier, vol. 24(1), pages 17-30, January.
    24. Dong, Kangyin & Dong, Xiucheng & Ren, Xiaohang, 2020. "Can expanding natural gas infrastructure mitigate CO2 emissions? Analysis of heterogeneous and mediation effects for China," Energy Economics, Elsevier, vol. 90(C).
    25. Hashem, Ibrahim Abaker Targio & Chang, Victor & Anuar, Nor Badrul & Adewole, Kayode & Yaqoob, Ibrar & Gani, Abdullah & Ahmed, Ejaz & Chiroma, Haruna, 2016. "The role of big data in smart city," International Journal of Information Management, Elsevier, vol. 36(5), pages 748-758.
    26. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    27. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    28. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan & Sohag, Kazi, 2018. "The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2002-2010.
    29. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    30. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    31. Shahbaz, Muhammad & Kablan, Sandrine & Hammoudeh, Shawkat & Nasir, Muhammad Ali & Kontoleon, Andreas, 2020. "Environmental Implications of Increased US Oil Production and Liberal Growth Agenda in Post -Paris Agreement Era," MPRA Paper 99277, University Library of Munich, Germany, revised 19 Mar 2020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Lee, Hye-Jeong & Yoo, Seung-Hoon & Lim, Sesil & Huh, Sung-Yoon, 2023. "External benefits of a road transportation system with vehicle-to-everything communications," Transport Policy, Elsevier, vol. 134(C), pages 128-138.
    3. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    4. Cong-Jian Liu & Fang-Kai Wang & Zhuang-Zhuang Wang & Tao Wang & Ze-Hao Jiang, 2022. "Autonomous Vehicles for Enhancing Expressway Capacity: A Dynamic Perspective," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    5. Ding, Tao & Li, Jiangyuan & Shi, Xing & Li, Xuhui & Chen, Ya, 2023. "Is artificial intelligence associated with carbon emissions reduction? Case of China," Resources Policy, Elsevier, vol. 85(PB).
    6. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    7. Ruiyang Ma & Boqiang Lin, 2023. "Digital infrastructure construction drives green economic transformation: evidence from Chinese cities," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    8. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2022. "How does energy trilemma eradication reduce carbon emissions? The role of dual environmental regulation for China," Energy Economics, Elsevier, vol. 116(C).
    9. George Aniegbunem & Andrea Kraj, 2023. "Economic Analysis of Sustainable Transportation Transitions: Case Study of the University of Saskatchewan Ground Services Fleet," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    10. Chinazaekpere Nwani & Ekpeno L. Effiong & Enyinnaya Timothy Matthew, 2023. "Globalization‐induced social changes and their environmental impacts: Assessing the role of information and communication technology in sub‐Saharan Africa," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(2), pages 347-367, March.
    11. Ma, Ruiyang & Lin, Boqiang, 2023. "Digitalization and energy-saving and emission reduction in Chinese cities: Synergy between industrialization and digitalization," Applied Energy, Elsevier, vol. 345(C).
    12. Emodi, Nnaemeka Vincent & Inekwe, John Nkwoma & Zakari, Abdulrasheed, 2022. "Transport infrastructure, CO2 emissions, mortality, and life expectancy in the Global South," Transport Policy, Elsevier, vol. 128(C), pages 243-253.
    13. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China," Energy Economics, Elsevier, vol. 127(PA).
    14. Tian Ma & Xiaobao Wei & Shuai Liu & Yilong Ren, 2022. "MGCAF: A Novel Multigraph Cross-Attention Fusion Method for Traffic Speed Prediction," IJERPH, MDPI, vol. 19(21), pages 1-13, November.
    15. Ding, Tao & Li, Hao & Tan, Ruipeng & Zhao, Xin, 2023. "How does geopolitical risk affect carbon emissions?: An empirical study from the perspective of mineral resources extraction in OECD countries," Resources Policy, Elsevier, vol. 85(PB).
    16. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    17. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    18. Yanjun Chang & Liuliu Lai, 2023. "Effects and Mechanisms of China’s Pilot Free Trade Zones on Green and High-Quality Development from the Dual-Circulation Perspective," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    19. Khalid Zaman & Muhammad Khalid Anser & Usama Awan & Wiwik Handayani & Hailan Salamun & Abdul Rashid Abdul Aziz & Mohd Khata Jabor & Kamalularifin Subari, 2022. "Transportation-Induced Carbon Emissions Jeopardize Healthcare Logistics Sustainability: Toward a Healthier Today and a Better Tomorrow," Logistics, MDPI, vol. 6(2), pages 1-17, April.
    20. Xiaoyuan Feng & Yue Chen & Hongbo Li & Tian Ma & Yilong Ren, 2023. "Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction," Sustainability, MDPI, vol. 15(9), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dou, Yue & Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "Quantifying the impacts of energy inequality on carbon emissions in China: A household-level analysis," Energy Economics, Elsevier, vol. 102(C).
    2. Shahbaz, Muhammad & Nasir, Muhammad Ali & Hille, Erik & Mahalik, Mantu Kumar, 2020. "UK's net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017)," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    3. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    4. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    5. Sharma, Rajesh & Sinha, Avik & Kautish, Pradeep, 2021. "Do economic endeavors complement sustainability goals in the emerging economies of South and Southeast Asia?," MPRA Paper 108163, University Library of Munich, Germany, revised 2021.
    6. Lahiani, Amine & Mefteh-Wali, Salma & Shahbaz, Muhammad & Vo, Xuan Vinh, 2021. "Does financial development influence renewable energy consumption to achieve carbon neutrality in the USA?," Energy Policy, Elsevier, vol. 158(C).
    7. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    8. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    9. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
    10. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    11. Ofori, Isaac K. & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2023. "Foreign direct investment and inclusive green growth in Africa: Energy efficiency contingencies and thresholds," Energy Economics, Elsevier, vol. 117(C).
    12. Wenyue Yang & Shaojian Wang & Xiaoming Zhao, 2018. "Measuring the Direct and Indirect Effects of Neighborhood-Built Environments on Travel-related CO 2 Emissions: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    13. Sinha, Avik & Mishra, Shekhar & Sharif, Arshian & Yarovaya, Larisa, 2021. "Does Green Financing help to improve the Environmental & Social Responsibility? Designing SDG framework through Advanced Quantile modelling," MPRA Paper 108150, University Library of Munich, Germany, revised 2021.
    14. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    15. Lee, Lillian & Chowdhury, Anup & Shubita, Moade, 2023. "Impact of Paris Agreement on financing strategy: Evidence from global FPSO industry," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    16. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    17. Shahbaz, Muhammad & Destek, Mehmet Akif & Dong, Kangyin & Jiao, Zhilun, 2021. "Time-varying impact of financial development on carbon emissions in G-7 countries: Evidence from the long history," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    18. Wang, Hao & Luo, Qi, 2022. "Can a colonial legacy explain the pollution haven hypothesis? A city-level panel analysis," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 482-495.
    19. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    20. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.

    More about this item

    Keywords

    Smart transportation; CO2 emissions; Mediating and heterogeneous effects; Spatial econometric models; China;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:105:y:2022:i:c:s014098832100565x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.