IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v10y2023i1d10.1057_s41599-023-01839-z.html
   My bibliography  Save this article

Digital infrastructure construction drives green economic transformation: evidence from Chinese cities

Author

Listed:
  • Ruiyang Ma

    (Xiamen University)

  • Boqiang Lin

    (Xiamen University)

Abstract

Existing studies mostly discussed the impact of transportation infrastructure on the economy and society. However, the environmental performance of digital infrastructure has been discussed less. This study explores the effect of digital infrastructure construction on green economic transformation based on theoretical analysis. Using the Broadband China policy as a quasi-natural experiment, the authors construct a staggered difference-in-difference (DID) model and empirically assess the effect of digital infrastructure on green economic development with panel data of Chinese 271 cities from 2003 to 2019. First, the main results indicate that digital infrastructure can enable green economic performance in Chinese cities. The results remain robust after considering the heterogeneous treatment effects, placebo test, and excluding the effect of other policies. Second, the heterogeneity results indicate that green economic performance in eastern and economically developed cities benefits more from digital infrastructure construction. Finally, by enhancing energy efficiency, fostering digital industrialization, and stimulating green technology innovation, the digital infrastructure indirectly contributes to the urban green economy development. This study put forward some constructive policy suggestions to promote green economic transformation from the digital infrastructure construction perspective.

Suggested Citation

  • Ruiyang Ma & Boqiang Lin, 2023. "Digital infrastructure construction drives green economic transformation: evidence from Chinese cities," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-01839-z
    DOI: 10.1057/s41599-023-01839-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-023-01839-z
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-023-01839-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lei & Li, Ke & Chen, Shuying & Wang, Xiaofei & Tang, Liwei, 2021. "Industrial activity, energy structure, and environmental pollution in China," Energy Economics, Elsevier, vol. 104(C).
    2. Paul Lanoie & Michel Patry & Richard Lajeunesse, 2008. "Environmental regulation and productivity: testing the porter hypothesis," Journal of Productivity Analysis, Springer, vol. 30(2), pages 121-128, October.
    3. Nina Czernich & Oliver Falck & Tobias Kretschmer & Ludger Woessmann, 2011. "Broadband Infrastructure and Economic Growth," Economic Journal, Royal Economic Society, vol. 121(552), pages 505-532, May.
    4. Zhang, Hongwei & Shao, Yanmin & Han, Xiping & Chang, Hsu-Ling, 2022. "A road towards ecological development in China: The nexus between green investment, natural resources, green technology innovation, and economic growth," Resources Policy, Elsevier, vol. 77(C).
    5. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    6. Lin, Boqiang & Zhu, Junpeng, 2019. "Fiscal spending and green economic growth: Evidence from China," Energy Economics, Elsevier, vol. 83(C), pages 264-271.
    7. Wang, Jiangquan & Ma, Xiaowei & Zhang, Jun & Zhao, Xin, 2022. "Impacts of digital technology on energy sustainability: China case study," Applied Energy, Elsevier, vol. 323(C).
    8. Baker, Andrew C. & Larcker, David F. & Wang, Charles C.Y., 2022. "How much should we trust staggered difference-in-differences estimates?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 370-395.
    9. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    10. Qiao, Lu & Li, Lin & Fei, Junjun, 2022. "Information infrastructure and air pollution: Empirical analysis based on data from Chinese cities," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 563-573.
    11. Song, Malin & Xie, Qianjiao & Shen, Zhiyang, 2021. "Impact of green credit on high-efficiency utilization of energy in China considering environmental constraints," Energy Policy, Elsevier, vol. 153(C).
    12. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    13. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    14. Long, Ruyin & Li, Haifeng & Wu, Meifen & Li, Wenbo, 2021. "Dynamic evaluation of the green development level of China's coal-resource-based cities using the TOPSIS method," Resources Policy, Elsevier, vol. 74(C).
    15. Tang, Chang & Xu, Yuanyuan & Hao, Yu & Wu, Haitao & Xue, Yan, 2021. "What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China," Energy Economics, Elsevier, vol. 103(C).
    16. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi Yin & Yudan Zhao, 2024. "Digital green value co-creation behavior, digital green network embedding and digital green innovation performance: moderating effects of digital green network fragmentation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Ma, Ruiyang & Lin, Boqiang, 2023. "Digitalization and energy-saving and emission reduction in Chinese cities: Synergy between industrialization and digitalization," Applied Energy, Elsevier, vol. 345(C).
    3. Xiaohong Liu, 2023. "Impacts of Environmental Pollution and Digital Economy on the New Energy Industry," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    4. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    5. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    6. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    7. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    8. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.
    9. Jian Song & Jing Wang & Zhe Chen, 2022. "How Low-Carbon Pilots Affect Chinese Urban Energy Efficiency: An Explanation from Technological Progress," IJERPH, MDPI, vol. 19(23), pages 1, November.
    10. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    11. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    12. Feng, Yuan & Chen, Zhi & Nie, Changfei, 2023. "The effect of broadband infrastructure construction on urban green innovation: Evidence from a quasi-natural experiment in China," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 581-598.
    13. Lin, Boqiang & Zhou, Yicheng, 2021. "Does fiscal decentralization improve energy and environmental performance? New perspective on vertical fiscal imbalance," Applied Energy, Elsevier, vol. 302(C).
    14. Zhong, Mei-Rui & Cao, Meng-Yuan & Zou, Han, 2022. "The carbon reduction effect of ICT: A perspective of factor substitution," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    15. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    16. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    17. Lin, Boqiang & Zhou, Yicheng, 2021. "How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    18. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    19. Pei Zhang & Peiran Chen & Fan Xiao & Yong Sun & Shuyan Ma & Ziwei Zhao, 2022. "The Impact of Information Infrastructure on Air Pollution: Empirical Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    20. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-01839-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.