IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i3p1667-1685.html
   My bibliography  Save this article

Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China

Author

Listed:
  • Bo Li
  • Xuejing Liu
  • Zhenhong Li

Abstract

In order to curb anthropogenic carbon emissions and achieve the carbon intensity reduction target in China, it is crucial to shed light on influencing factors of carbon emissions at the city level. This paper selects Tianjin, one of the largest economic centers in northern China, as a study case. An extended stochastic impact by regression on population, affluence, and technology model is conducted to systematically identify the determinant factors driving CO 2 emissions in Tianjin during the period 1996–2012. To eliminate multicollinearity problems, partial least squares regression is applied to improve this model. Empirical results show that the rapid process of urbanization has the greatest impact on the increase in carbon emissions, while the industrialization level has the least impact. Affluence level, population size, and FDI also play important roles in CO 2 emission growth. The outcome of the FDI–emission nexus supports the pollution haven hypothesis, which shows that the inflow of foreign capital harms the local environment. Improvement in energy intensity is the major inhibitory factor and partially offsets the increase in carbon emissions. Finally, policy recommendations for carbon emission reduction plan in Tianjin have been given. Moreover, the approach developed in this research is transferable and can be utilized to analyze driving factors of CO 2 emissions and formulate sustainable development strategies in another region. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Bo Li & Xuejing Liu & Zhenhong Li, 2015. "Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1667-1685, April.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1667-1685
    DOI: 10.1007/s11069-014-1574-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1574-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1574-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Junsong & Deng, Hongbing & Duan, Jing & Zhao, Jingzhu, 2009. "Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method--A case study in Henan Province, China," Ecological Economics, Elsevier, vol. 68(11), pages 2818-2824, September.
    2. Kaika, Dimitra & Zervas, Efthimios, 2013. "The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case," Energy Policy, Elsevier, vol. 62(C), pages 1392-1402.
    3. Li, Huanan & Mu, Hailin & Zhang, Ming & Gui, Shusen, 2012. "Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions," Energy, Elsevier, vol. 39(1), pages 319-326.
    4. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    5. Galeotti, Marzio & Lanza, Alessandro, 1999. "Richer and cleaner? A study on carbon dioxide emissions in developing countries," Energy Policy, Elsevier, vol. 27(10), pages 565-573, October.
    6. Akbostanci, Elä°F & Tunã‡, G. Ä°Pek & Tãœrãœt-Aåžik, Serap, 2007. "Pollution haven hypothesis and the role of dirty industries in Turkey's exports," Environment and Development Economics, Cambridge University Press, vol. 12(2), pages 297-322, April.
    7. Robert Hoffmann & Chew-Ging Lee & Bala Ramasamy & Matthew Yeung, 2005. "FDI and pollution: a granger causality test using panel data," Journal of International Development, John Wiley & Sons, Ltd., vol. 17(3), pages 311-317.
    8. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    9. Shi, Anqing, 2003. "The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data," Ecological Economics, Elsevier, vol. 44(1), pages 29-42, February.
    10. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    11. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    12. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    13. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    14. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    15. Roberts, J. Timmons & Grimes, Peter E., 1997. "Carbon intensity and economic development 1962-1991: A brief exploration of the environmental Kuznets curve," World Development, Elsevier, vol. 25(2), pages 191-198, February.
    16. Wei, Taoyuan, 2011. "What STIRPAT tells about effects of population and affluence on the environment?," Ecological Economics, Elsevier, vol. 72(C), pages 70-74.
    17. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    18. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    19. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    20. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    21. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, I," Energy, Elsevier, vol. 36(1), pages 685-693.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Yang & Haifeng Lan & Jing Li, 2019. "Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM 2.5 Concentration in China’s Inland Cities: A Case Study from Chengdu Plain Economic Zone," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    2. Wang, Xiaojun & Chen, Yiping & Chen, Jingjing & Mao, Bingjing & Peng, Lihong & Yu, Ang, 2022. "China's CO2 regional synergistic emission reduction: Killing two birds with one stone?," Energy Policy, Elsevier, vol. 168(C).
    3. Yuan Tian & Wei Chen & Shuzhen Zhu, 2017. "Does financial macroenvironment impact on carbon intensity: evidence from ARDL-ECM model in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 759-777, September.
    4. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    5. Destek, Mehmet Akif, 2019. "Investigation on the role of economic, social and political globalization on environment: Evidence from CEECs," MPRA Paper 106937, University Library of Munich, Germany.
    6. Chun Liu & Gui-hua Nie, 2021. "Identifying the Driving Factors of Food Nitrogen Footprint in China, 2000–2018: Econometric Analysis of Provincial Spatial Panel Data by the STIRPAT Model," Sustainability, MDPI, vol. 13(11), pages 1-23, May.
    7. Jing Wang & Jie Li, 2021. "Exploring the Impact of International Trade on Carbon Emissions: New Evidence from China’s 282 Cities," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
    8. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    9. Munir Ahmad & Gul Jabeen & Syed Ahsan Ali Shah & Abdul Rehman & Fayyaz Ahmad & Cem Işik, 2022. "Assessing long- and short-run dynamic interplay among balance of trade, aggregate economic output, real exchange rate, and CO2 emissions in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7283-7323, May.
    10. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    11. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    12. Haiyang Shang & Yue Hu & Jiaojiao Fan & Nini Song & Fang Su, 2023. "Analysis of Farm Household Livelihood Sustainability Based on Improved IPAT Equation: A Case Study of 24 Counties in 3 Cities in the Qin-Ba Mountain Region of Southern Shaanxi," Land, MDPI, vol. 12(5), pages 1-17, April.
    13. Yuan Kong & Chao Feng & Liyang Guo, 2022. "Peaking Global and G20 Countries’ CO 2 Emissions under the Shared Socio-Economic Pathways," IJERPH, MDPI, vol. 19(17), pages 1-19, September.
    14. Thai-Ha Le, 2021. "Drivers of greenhouse gas emissions in ASEAN + 6 countries: a new look," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18096-18115, December.
    15. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    16. Yiping Liu & Yuling Han, 2021. "Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    17. Weidong Chen & Ruoyu Yang, 2018. "Evolving Temporal–Spatial Trends, Spatial Association, and Influencing Factors of Carbon Emissions in Mainland China: Empirical Analysis Based on Provincial Panel Data from 2006 to 2015," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    18. Junfeng Zhang & Hong Fang & Bo Peng & Xu Wang & Siran Fang, 2016. "Productivity Growth-Accounting for Undesirable Outputs and Its Influencing Factors: The Case of China," Sustainability, MDPI, vol. 8(11), pages 1-13, November.
    19. Zaman, Khalid & Abdullah, Alias bin & Khan, Anwar & Nasir, Mohammad Rusdi bin Mohd & Hamzah, Tengku Adeline Adura Tengku & Hussain, Saddam, 2016. "Dynamic linkages among energy consumption, environment, health and wealth in BRICS countries: Green growth key to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1263-1271.
    20. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    21. Shanshan Wang & Tianhao Zhao & Haitao Zheng & Jie Hu, 2017. "The STIRPAT Analysis on Carbon Emission in Chinese Cities: An Asymmetric Laplace Distribution Mixture Model," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    22. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    23. Mansi Wang & Noman Arshed & Mubbasher Munir & Samma Faiz Rasool & Weiwen Lin, 2021. "Investigation of the STIRPAT model of environmental quality: a case of nonlinear quantile panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12217-12232, August.
    24. Zahra Nasrollahi & Mohadeseh-sadat Hashemi & Saeed Bameri & Vahid Mohamad Taghvaee, 2020. "Environmental pollution, economic growth, population, industrialization, and technology in weak and strong sustainability: using STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1105-1122, February.
    25. Johan-Andrés Vélez-Henao, 2020. "Does urbanization boost environmental impacts in Colombia? An extended STIRPAT–LCA approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 851-866, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    2. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    3. Haitao Zheng & Jie Hu & Rong Guan & Shanshan Wang, 2016. "Examining Determinants of CO 2 Emissions in 73 Cities in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    4. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    5. Zhou, Yang & Liu, Yansui & Wu, Wenxiang & Li, Yurui, 2015. "Effects of rural–urban development transformation on energy consumption and CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 863-875.
    6. Shoufu Lin & Ji Sun & Dora Marinova & Dingtao Zhao, 2017. "Effects of Population and Land Urbanization on China’s Environmental Impact: Empirical Analysis Based on the Extended STIRPAT Model," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    7. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    8. Du, W.C. & Xia, X.H., 2018. "How does urbanization affect GHG emissions? A cross-country panel threshold data analysis," Applied Energy, Elsevier, vol. 229(C), pages 872-883.
    9. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    10. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    11. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    12. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    13. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    14. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    15. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    16. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    17. Ronald R. Kumar & Peter J. Stauvermann, 2019. "The Effects of a Revenue-Neutral Child Subsidy Tax Mechanism on Growth and GHG Emissions," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    18. Zhang, Chuanguo & Zhou, Xiangxue, 2016. "Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 943-951.
    19. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1667-1685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.