IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v114y2019ic24.html
   My bibliography  Save this article

Economic potential to develop concentrating solar power in China: A provincial assessment

Author

Listed:
  • Ji, Junping
  • Tang, Hua
  • Jin, Peng

Abstract

Concentrating solar power (CSP), a promising renewable energy technology, requires better policy support for its initial implementation, which, in turn, necessitates accurate forecasting of its economic potential. This study develops a model based on meteorological data and local policies to calculate the levelized cost of electricity (LCOE) in 31 provincial-level divisions in China. Based on land occupation, concessionary loan, and technology mode as the independent variables, the LCOE is estimated to be $142/MWh to $781/MWh in sites with direct normal irradiance above 1,800 kWh/m2/yr under current local policies and conditions (with and without thermal storage). Thus, this study lays a solid foundation for forecasting power generation and selecting economically feasible sites. It analyzes the CSP learning curve with respect to technologically advanced trends and scale expansion. With the proper optimization of the technology mode, it is reasonable to expect a significant LCOE reduction and grid parity in certain areas. A comparison of the current policies provides a reference for the Chinese government to formulate subsidy policies that would make CSP more competitive.

Suggested Citation

  • Ji, Junping & Tang, Hua & Jin, Peng, 2019. "Economic potential to develop concentrating solar power in China: A provincial assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:114:y:2019:i:c:24
    DOI: 10.1016/j.rser.2019.109279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119304873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    2. Perry Sadorsky, 2014. "The Effect of Urbanization and Industrialization on Energy Use in Emerging Economies: Implications for Sustainable Development," American Journal of Economics and Sociology, Wiley Blackwell, vol. 73(2), pages 392-409, April.
    3. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Fadhl, Saeed Obaid, 2015. "Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 996-1027.
    4. Purohit, Ishan & Purohit, Pallav, 2017. "Technical and economic potential of concentrating solar thermal power generation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 648-667.
    5. del Río, Pablo & Peñasco, Cristina & Mir-Artigues, Pere, 2018. "An overview of drivers and barriers to concentrated solar power in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1019-1029.
    6. Purohit, Ishan & Purohit, Pallav, 2010. "Techno-economic evaluation of concentrating solar power generation in India," Energy Policy, Elsevier, vol. 38(6), pages 3015-3029, June.
    7. Purohit, Ishan & Purohit, Pallav & Shekhar, Shashaank, 2013. "Evaluating the potential of concentrating solar power generation in Northwestern India," Energy Policy, Elsevier, vol. 62(C), pages 157-175.
    8. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    9. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    10. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    11. Shouman, Enas R. & Khattab, N.M., 2015. "Future economic of concentrating solar power (CSP) for electricity generation in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1119-1127.
    12. Enas Raafat Maamoun Shouman, 2018. "Economic Future of Concentrating Solar Power for Electricity Generation," Chapters, in: Pawel Madejski (ed.), Thermal Power Plants - New Trends and Recent Developments, IntechOpen.
    13. Kost, Christoph & Flath, Christoph M. & Möst, Dominik, 2013. "Concentrating solar power plant investment and operation decisions under different price and support mechanisms," Energy Policy, Elsevier, vol. 61(C), pages 238-248.
    14. Tan, Zhongfu & Tan, Qingkun & Rong, Menglei, 2018. "Analysis on the financing status of PV industry in China and the ways of improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 409-420.
    15. Shen, Jianfei & Luo, Chen, 2015. "Overall review of renewable energy subsidy policies in China – Contradictions of intentions and effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1478-1488.
    16. Lilliestam, Johan & Barradi, Touria & Caldés, Natalia & Gomez, Marta & Hanger, Susanne & Kern, Jürgen & Komendantova, Nadejda & Mehos, Mark & Hong, Wai Mun & Wang, Zhifeng & Patt, Anthony, 2018. "Policies to keep and expand the option of concentrating solar power for dispatchable renewable electricity," Energy Policy, Elsevier, vol. 116(C), pages 193-197.
    17. Vieira de Souza, Luiz Enrique & Gilmanova Cavalcante, Alina Mikhailovna, 2017. "Concentrated Solar Power deployment in emerging economies: The cases of China and Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1094-1103.
    18. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    19. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
    20. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    21. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    22. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    23. Dowling, Alexander W. & Zheng, Tian & Zavala, Victor M., 2017. "Economic assessment of concentrated solar power technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1019-1032.
    24. Johan Lilliestam & Mercè Labordena & Anthony Patt & Stefan Pfenninger, 2017. "Empirically observed learning rates for concentrating solar power and their responses to regime change," Nature Energy, Nature, vol. 2(7), pages 1-6, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serrano-Arrabal, J. & Serrano-Aguilera, J.J. & Sánchez-González, A., 2021. "Dual-tower CSP plants: optical assessment and optimization with a novel cone-tracing model," Renewable Energy, Elsevier, vol. 178(C), pages 429-442.
    2. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Li, Mingquan & Virguez, Edgar & Shan, Rui & Tian, Jialin & Gao, Shuo & Patiño-Echeverri, Dalia, 2022. "High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system," Applied Energy, Elsevier, vol. 306(PA).
    4. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Ephraim Bonah Agyekum & Tomiwa Sunday Adebayo & Festus Victor Bekun & Nallapaneni Manoj Kumar & Manoj Kumar Panjwani, 2021. "Effect of Two Different Heat Transfer Fluids on the Performance of Solar Tower CSP by Comparing Recompression Supercritical CO 2 and Rankine Power Cycles, China," Energies, MDPI, vol. 14(12), pages 1-19, June.
    6. Khaloie, Hooman & Anvari-Moghaddam, Amjad & Contreras, Javier & Siano, Pierluigi, 2021. "Risk-involved optimal operating strategy of a hybrid power generation company: A mixed interval-CVaR model," Energy, Elsevier, vol. 232(C).
    7. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    8. Coronas, Sergio & Martín, Helena & de la Hoz, Jordi & García de Vicuña, Luis & Castilla, Miguel, 2021. "MONTE-CARLO probabilistic valuation of concentrated solar power systems in Spain under the 2014 retroactive regulatory framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Irving Cruz-Robles & Jorge M. Islas-Samperio & Claudio A. Estrada, 2022. "Levelized Cost of Heat of the CSP th Hybrid Central Tower Technology," Energies, MDPI, vol. 15(22), pages 1-23, November.
    10. Catalina Hernández & Rodrigo Barraza & Alejandro Saez & Mercedes Ibarra & Danilo Estay, 2020. "Potential Map for the Installation of Concentrated Solar Power Towers in Chile," Energies, MDPI, vol. 13(9), pages 1-15, April.
    11. Tiantian Zhang & Ken’ichi Matsumoto & Kei Nakagawa, 2021. "The Relative Importance of Determinants of the Solar Photovoltaic Industry in China: Analyses by the Diamond Model and the Analytic Hierarchy Process," Energies, MDPI, vol. 14(20), pages 1-20, October.
    12. Chen, Fuying & Yang, Qing & Zheng, Niting & Wang, Yuxuan & Huang, Junling & Xing, Lu & Li, Jianlan & Feng, Shuanglei & Chen, Guoqian & Kleissl, Jan, 2022. "Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS)," Applied Energy, Elsevier, vol. 315(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    2. San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
    3. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    4. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    5. McPherson, Madeleine & Mehos, Mark & Denholm, Paul, 2020. "Leveraging concentrating solar power plant dispatchability: A review of the impacts of global market structures and policy," Energy Policy, Elsevier, vol. 139(C).
    6. Wu, Yunna & Zhang, Buyuan & Wu, Chenghao & Zhang, Ting & Liu, Fangtong, 2019. "Optimal site selection for parabolic trough concentrating solar power plant using extended PROMETHEE method: A case in China," Renewable Energy, Elsevier, vol. 143(C), pages 1910-1927.
    7. Purohit, Ishan & Purohit, Pallav, 2017. "Technical and economic potential of concentrating solar thermal power generation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 648-667.
    8. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    9. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    10. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Abdelhady, Suzan, 2021. "Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV)," Renewable Energy, Elsevier, vol. 168(C), pages 332-342.
    12. Gamil, Ahmed & Li, Peiwen & Ali, Babkir & Hamid, Mohamed Ali, 2022. "Concentrating solar thermal power generation in Sudan: Potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    14. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    15. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    16. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Aqachmar, Zineb & Allouhi, Amine & Jamil, Abdelmajid & Gagouch, Belgacem & Kousksou, Tarik, 2019. "Parabolic trough solar thermal power plant Noor I in Morocco," Energy, Elsevier, vol. 178(C), pages 572-584.
    18. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    19. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    20. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:114:y:2019:i:c:24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.