IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1359-d106767.html
   My bibliography  Save this article

A Study on China’s Urban Electricity Productivity Convergence with Spatial Smooth Transition Effect

Author

Listed:
  • Ming Luo

    (Economics and Management School, Wuhan University, No. 299 Bayi Road, Wuhan 430072, China)

  • Ruguo Fan

    (Economics and Management School, Wuhan University, No. 299 Bayi Road, Wuhan 430072, China)

  • Yingqing Zhang

    (Economics and Management School, Wuhan University, No. 299 Bayi Road, Wuhan 430072, China)

Abstract

This paper analyzes the absolute convergence of urban electricity productivity in China during 1990–2011, applying Spatial Error Smooth Transition Auto-regression Model, and examines the spatial effect in convergence process. Then it analyzes the stage characteristics of electricity productivity convergence during the process of electricity market reformation and the conditional convergence which is affected by the urban economy. According to the results of our research, there exists significant absolute convergence of urban electricity productivity in China, and the spatial effect, especially spatial smooth transition effect, significantly enhance the convergence of urban electricity productivity. Since the electricity market reformation in 2002, significant stage characteristics exist in convergence of urban electricity productivity. The convergence rate of electricity productivity before 2002 is obviously lower than the one during the whole sample period, also the one after 2002 and the spatial nonlinear effect strengthens during the later period with marketization in electricity market and stricter regulation on energy conservation. The urban economy also affects the convergence of urban electricity productivity, while it does not promote the convergence rate because the high proportion of electricity-intensive industry in cities of western and northeastern region. At the conclusion of our paper, we put forward policy suggestions with the objective of narrowing the gap of urban electricity productivity and realizing sustainable urban development.

Suggested Citation

  • Ming Luo & Ruguo Fan & Yingqing Zhang, 2017. "A Study on China’s Urban Electricity Productivity Convergence with Spatial Smooth Transition Effect," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1359-:d:106767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    2. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    3. Le Pen, Yannick & Sévi, Benoît, 2010. "On the non-convergence of energy intensities: Evidence from a pair-wise econometric approach," Ecological Economics, Elsevier, vol. 69(3), pages 641-650, January.
    4. Fang Yang & Shiying Pan & Xin Yao, 2016. "Regional Convergence and Sustainable Development in China," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    5. T. W. Swan, 1956. "ECONOMIC GROWTH and CAPITAL ACCUMULATION," The Economic Record, The Economic Society of Australia, vol. 32(2), pages 334-361, November.
    6. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    7. Maza, Adolfo & Villaverde, José, 2008. "The world per capita electricity consumption distribution: Signs of convergence?," Energy Policy, Elsevier, vol. 36(11), pages 4255-4261, November.
    8. Duro, Juan Antonio & Padilla, Emilio, 2011. "Inequality across countries in energy intensities: An analysis of the role of energy transformation and final energy consumption," Energy Economics, Elsevier, vol. 33(3), pages 474-479, May.
    9. Pede, Valerien O. & Florax, Raymond J.G.M. & Lambert, Dayton M., 2014. "Spatial econometric STAR models: Lagrange multiplier tests, Monte Carlo simulations and an empirical application," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 118-128.
    10. Dijk, Dick van & Franses, Philip Hans, 1999. "Modeling Multiple Regimes in the Business Cycle," Macroeconomic Dynamics, Cambridge University Press, vol. 3(3), pages 311-340, September.
    11. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    12. Moon, Young-Seok & Sonn, Yang-Hoon, 1996. "Productive energy consumption and economic growth: An endogenous growth model and its empirical application," Resource and Energy Economics, Elsevier, vol. 18(2), pages 189-200, June.
    13. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    14. Ezcurra, Roberto, 2007. "Distribution dynamics of energy intensities: A cross-country analysis," Energy Policy, Elsevier, vol. 35(10), pages 5254-5259, October.
    15. Herrerias, M.J., 2012. "World energy intensity convergence revisited: A weighted distribution dynamics approach," Energy Policy, Elsevier, vol. 49(C), pages 383-399.
    16. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    17. Lei Jiang & Minhe Ji, 2016. "China’s Energy Intensity, Determinants and Spatial Effects," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    18. Roberto Basile, 2008. "Regional economic growth in Europe: A semiparametric spatial dependence approach," Papers in Regional Science, Wiley Blackwell, vol. 87(4), pages 527-544, November.
    19. Nicholas Apergis & Christina Christou, 2016. "Energy productivity convergence: new evidence from club converging," Applied Economics Letters, Taylor & Francis Journals, vol. 23(2), pages 142-145, February.
    20. Lucas Bretschger & Sjak Smulders, 2007. "Sustainable Resource Use and Economic Dynamics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 1-13, January.
    21. Mielnik, Otavio & Goldemberg, Jose, 2000. "Converging to a common pattern of energy use in developing and industrialized countries," Energy Policy, Elsevier, vol. 28(8), pages 503-508, July.
    22. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    23. Markandya, Anil & Pedroso-Galinato, Suzette & Streimikiene, Dalia, 2006. "Energy intensity in transition economies: Is there convergence towards the EU average?," Energy Economics, Elsevier, vol. 28(1), pages 121-145, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    2. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    3. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    4. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    5. Romero-Ávila, Diego & Omay, Tolga, 2022. "Convergence of per capita energy consumption around the world: New evidence from nonlinear panel unit root tests," Energy Economics, Elsevier, vol. 111(C).
    6. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    7. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    8. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    9. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    10. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Stochastic convergence in per capita fossil fuel consumption in U.S. states," Energy Economics, Elsevier, vol. 62(C), pages 382-395.
    11. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 715-728.
    12. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2017. "Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis," Energy Economics, Elsevier, vol. 62(C), pages 347-356.
    13. Mishra, Vinod & Smyth, Russell, 2017. "Conditional convergence in Australia's energy consumption at the sector level," Energy Economics, Elsevier, vol. 62(C), pages 396-403.
    14. Wu, Jianxin & Wu, Yanrui & Se Cheong, Tsun & Yu, Yanni, 2018. "Distribution dynamics of energy intensity in Chinese cities," Applied Energy, Elsevier, vol. 211(C), pages 875-889.
    15. González-Álvarez, María A. & Montañés, Antonio & Olmos, Lorena, 2020. "Towards a sustainable energy scenario? A worldwide analysis," Energy Economics, Elsevier, vol. 87(C).
    16. Mishra, Vinod & Smyth, Russell, 2014. "Convergence in energy consumption per capita among ASEAN countries," Energy Policy, Elsevier, vol. 73(C), pages 180-185.
    17. Carlo Andrea Bollino & Marzio Galeotti, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," Working Papers 2021.06, Fondazione Eni Enrico Mattei.
    18. Nicholas Apergis & Christina Christou, 2016. "Energy productivity convergence: new evidence from club converging," Applied Economics Letters, Taylor & Francis Journals, vol. 23(2), pages 142-145, February.
    19. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Herrerias, M.J. & Aller, Carlos & Ordóñez, Javier, 2017. "Residential energy consumption: A convergence analysis across Chinese regions," Energy Economics, Elsevier, vol. 62(C), pages 371-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1359-:d:106767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.