IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v126y2017icp162-173.html
   My bibliography  Save this article

Temporal and spatial heterogeneity of carbon intensity in China's construction industry

Author

Listed:
  • Li, Wei
  • Sun, Wen
  • Li, Guomin
  • Cui, Pengfei
  • Wu, Wen
  • Jin, Baihui

Abstract

As a basic, forerunner industry, as well as a major energy consumer, the construction industry is now facing the dual pressures of energy conservation and emissions abatement. Employing 2005–2014 data, the study estimates the sector’s carbon intensity in 30 provinces in China using an improved accounting framework. Moran’s I index and a dynamic evolution model, based on the kernel density function, are employed to depict the temporal and spatial heterogeneity in this industry’s emissions patterns. We find that significant features of spatial cluster exist in neighboring provinces of China in the space dimension, and the sector’s annual average carbon intensity can be classified into four agglomeration areas, namely, high and high (H-H), low and high (L-H), low and low (L-L) and high and low (H-L). From the carbon intensity accounting perspective, building material is the main contributor to the spatial pattern. In the time dimension, for the sampling periods of 2005–2008, 2008–2011, and 2011–2014, the decomposition difference of the sector’s carbon intensity in 24 provinces is widening, except for 6 provinces including Inner Mongolia, Guangxi, and Ningxia. The results of the kernel density function analysis show that the critical areas to cut carbon emissions in the construction industry are the H-H agglomeration areas and the provinces in these areas should borrow ideas from those in L-L agglomeration areas for this purpose. In conclusion, province-specific policies based upon temporal and spatial heterogeneity are proposed to achieve China’s emissions abatement target as soon as possible.

Suggested Citation

  • Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
  • Handle: RePEc:eee:recore:v:126:y:2017:i:c:p:162-173
    DOI: 10.1016/j.resconrec.2017.07.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917302367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.07.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahai Yuan & Chunning Na & Zheng Hu & Ping Li, 2016. "Energy Conservation and Emissions Reduction in China’s Power Sector: Alternative Scenarios Up to 2020," Energies, MDPI, vol. 9(4), pages 1-16, April.
    2. Chau, C.K. & Hui, W.K. & Ng, W.Y. & Powell, G., 2012. "Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 22-34.
    3. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    4. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    5. Dimoudi, A. & Tompa, C., 2008. "Energy and environmental indicators related to construction of office buildings," Resources, Conservation & Recycling, Elsevier, vol. 53(1), pages 86-95.
    6. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    7. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    8. Yang, Jing & Wu, Jingli & He, Tao & Li, Lingyue & Han, Dezhi & Wang, Zhiqi & Wu, Jinhu, 2016. "Energy gases and related carbon emissions in China," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 140-148.
    9. Seungjun Roh & Sungho Tae, 2016. "Building Simplified Life Cycle CO 2 Emissions Assessment Tool (B‐SCAT) to Support Low‐Carbon Building Design in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    10. Yuan, Jiahai & Kang, Junjie & Yu, Cong & Hu, Zhaoguang, 2011. "Energy conservation and emissions reduction in China—Progress and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4334-4347.
    11. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    12. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    13. Li, Yashuai & Zhang, Xueqing & Ding, Guoyu & Feng, Zhouquan, 2016. "Developing a quantitative construction waste estimation model for building construction projects," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 9-20.
    14. Seo, Seongwon & Kim, Junbeum & Yum, Kwok-Keung & McGregor, James, 2015. "Embodied carbon of building products during their supply chains: Case study of aluminium window in Australia," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 160-166.
    15. Charlie C. Spork & Abel Chavez & Xavier Gabarrell Durany & Martin K. Patel & Gara Villalba Méndez, 2015. "Increasing Precision in Greenhouse Gas Accounting Using Real-Time Emission Factors," Journal of Industrial Ecology, Yale University, vol. 19(3), pages 380-390, June.
    16. Urge-Vorsatz, Diana & Novikova, Aleksandra, 2008. "Potentials and costs of carbon dioxide mitigation in the world's buildings," Energy Policy, Elsevier, vol. 36(2), pages 642-661, February.
    17. Wei Li & Guomin Li & Rongxia Zhang & Wen Sun & Wen Wu & Baihui Jin & Pengfei Cui, 2017. "Carbon Reduction Potential of Resource-Dependent Regions Based on Simulated Annealing Programming Algorithm," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    18. Wang, Tao & Foliente, Greg & Song, Xinyi & Xue, Jiawei & Fang, Dongping, 2014. "Implications and future direction of greenhouse gas emission mitigation policies in the building sector of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 520-530.
    19. Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Club Convergence in Carbon Dioxide Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(1), pages 47-70, September.
    20. Jim Watson & Rob Byrne & David Ockwell & Michele Stua, 2015. "Lessons from China: building technological capabilities for low carbon technology transfer and development," Climatic Change, Springer, vol. 131(3), pages 387-399, August.
    21. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    22. Kexi Pan & Yongfu Li & Hanxiong Zhu & Anrong Dang, 2017. "Spatial Configuration of Energy Consumption and Carbon Emissions of Shanghai, and Our Policy Suggestions," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    23. Chuanhe Xiong & Degang Yang & Jinwei Huo, 2016. "Spatial-Temporal Characteristics and LMDI-Based Impact Factor Decomposition of Agricultural Carbon Emissions in Hotan Prefecture, China," Sustainability, MDPI, vol. 8(3), pages 1-14, March.
    24. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Chen, Zuoqi & Liu, Rui & Li, Linyi & Wu, Jianping, 2016. "Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis," Applied Energy, Elsevier, vol. 168(C), pages 523-533.
    25. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    26. Lee, Seungtaek & Chong, Wai Oswald, 2016. "Causal relationships of energy consumption, price, and CO2 emissions in the U.S. building sector," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 220-226.
    27. Fan Xiao & Zhi-Hua Hu & Ke-Xin Wang & Pei-Hua Fu, 2015. "Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    28. Jin, Peng & Jiang, Zeyi & Bao, Cheng & Hao, Shiyu & Zhang, Xinxin, 2017. "The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 58-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    2. Lu, Changxiang & Ye, Yong & Fang, Yongjun & Fang, Jiaqi, 2023. "An optimal control theory approach for freight structure path evolution post-COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    3. Jiang, Wei & Sun, Yifei, 2023. "Which is the more important factor of carbon emission, coal consumption or industrial structure?," Energy Policy, Elsevier, vol. 176(C).
    4. He, Xianya & Lin, Jian & Xu, Jinmei & Huang, Jingzhi & Wu, Nianyuan & Zhang, Yining & Liu, Songling & Jing, Rui & Xie, Shan & Zhao, Yingru, 2023. "Long-term planning of wind and solar power considering the technology readiness level under China's decarbonization strategy," Applied Energy, Elsevier, vol. 348(C).
    5. Jiandong Chen & Chong Xu & Qianjiao Xie & Malin Song, 2020. "Net primary productivity‐based factors of China's carbon intensity: A regional perspective," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1727-1748, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Sara Ayub & Shahrin Md Ayob & Chee Wei Tan & Saad M. Arif & Muhammad Taimoor & Lubna Aziz & Abba Lawan Bukar & Qasem Al-Tashi & Razman Ayop, 2023. "Multi-Criteria Energy Management with Preference Induced Load Scheduling Using Grey Wolf Optimizer," Sustainability, MDPI, vol. 15(2), pages 1-38, January.
    3. Chen, Wei-Han & You, Fengqi, 2022. "Sustainable building climate control with renewable energy sources using nonlinear model predictive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Casanovas-Rubio, Maria del Mar & Ramos, Gonzalo, 2017. "Decision-making tool for the assessment and selection of construction processes based on environmental criteria: Application to precast and cast-in-situ alternatives," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 107-117.
    5. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    6. Yan Wang & Yuan Gong & Caiquan Bai & Hong Yan & Xing Yi, 2023. "Exploring the convergence patterns of PM2.5 in Chinese cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 708-733, January.
    7. Jingwen Lu & Lihua Dai, 2023. "Examining the Threshold Effect of Environmental Regulation: The Impact of Agricultural Product Trade Openness on Agricultural Carbon Emissions," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    8. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    9. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    10. Gregory Casey & Oded Galor, 2016. "Is economic growth compatible with reductions in carbon emissions? Investigating the impacts of diminished population growth," Working Papers 2016-8, Brown University, Department of Economics.
    11. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    12. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    13. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    14. Shweta Singh & Bhavik R. Bakshi, 2014. "Accounting for Emissions and Sinks from the Biogeochemical Cycle of Carbon in the U.S. Economic Input-Output Model," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 818-828, December.
    15. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    16. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    17. Ma, Ben & Zheng, Xinye, 2018. "Biased data revisions: Unintended consequences of China's energy-saving mandates," China Economic Review, Elsevier, vol. 48(C), pages 102-113.
    18. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    19. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    20. Luis A. Gil-Alana & Juncal Cunado & Rangan Gupta, 2017. "Persistence, Mean-Reversion and Non-linearities in $$\hbox {CO2}$$ CO2 Emissions: Evidence from the BRICS and G7 Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 869-883, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:126:y:2017:i:c:p:162-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.