IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p104-d87609.html
   My bibliography  Save this article

Spatial Configuration of Energy Consumption and Carbon Emissions of Shanghai, and Our Policy Suggestions

Author

Listed:
  • Kexi Pan

    (Fudan University Energy Research Center, School of Social Development and Public Policy, Fudan University, Shanghai 200433, China
    These authors contributed equally to this work.)

  • Yongfu Li

    (Shanghai Academy of Fine Arts, Shanghai University, Shanghai 200444, China
    These authors contributed equally to this work.)

  • Hanxiong Zhu

    (Fudan University Energy Research Center, School of Social Development and Public Policy, Fudan University, Shanghai 200433, China
    These authors contributed equally to this work.)

  • Anrong Dang

    (School of Architecture, Tsinghua University, Beijing 100084, China)

Abstract

This research constructs a 1 km × 1 km Shanghai energy consumption and carbon emission spatial grid through a bottom-up approach. First, we locate all energy consumption locations in Shanghai via GIS. Second, we calculate energy consumption and associated CO 2 emissions by energy type, by usage type, and by facilities. Finally, we use a spatial grid to represent the energy consumption and CO 2 emissions. The grid shows CO 2 emissions in Shanghai are highly spatially correlated with energy types and volumes of consumption. This research also finds out that high energy consumption and carbon emission locations in Shanghai display significant spatial aggregation. In 7209 spatial energy consumption cells, the top 10 grids of emissions account for 52.8% of total CO 2 emissions in Shanghai; the top 20 grids account for 64.5% and the top 50 grids account for 76.5%. The most critical point emission sources are coal-fired power plants and iron and steel plants. The most important line emission sources are the Yan’an Road and Inner Ring viaducts. The area emission sources that account for the most future-projected growth are commercial and residential natural gas. After this spatial analysis, this paper makes policy suggestions and solutions to conserve energy consumption and mitigate carbon emissions in Shanghai.

Suggested Citation

  • Kexi Pan & Yongfu Li & Hanxiong Zhu & Anrong Dang, 2017. "Spatial Configuration of Energy Consumption and Carbon Emissions of Shanghai, and Our Policy Suggestions," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:104-:d:87609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unknown, 2016. "Department Publications 2014," Publications Lists 239845, University of Minnesota, Department of Applied Economics.
    2. Ke-Xi Pan & Han-Xiong Zhu & Zheng Chang & Kuan-Hong Wu & Yu-Li Shan & Zhi-Xing Liu, 2013. "Estimation of Coal-Related Co2 Emissions: The Case of China," Energy & Environment, , vol. 24(7-8), pages 1309-1321, December.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    2. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    3. Hanxiong Zhu & Kexi Pan & Yong Liu & Zheng Chang & Ping Jiang & Yongfu Li, 2019. "Analyzing Temporal and Spatial Characteristics and Determinant Factors of Energy-Related CO 2 Emissions of Shanghai in China Using High-Resolution Gridded Data," Sustainability, MDPI, vol. 11(17), pages 1-21, August.
    4. Yanzhuo Liu & Shanshan Song & Chunjuan Bi & Junli Zhao & Di Xi & Ziqi Su, 2019. "Occurrence, Distribution and Risk Assessment of Mercury in Multimedia of Soil-Dust-Plants in Shanghai, China," IJERPH, MDPI, vol. 16(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Yuli & Guan, Dabo & Meng, Jing & Liu, Zhu & Schroeder, Heike & Liu, Jianghua & Mi, Zhifu, 2018. "Rapid growth of petroleum coke consumption and its related emissions in China," Applied Energy, Elsevier, vol. 226(C), pages 494-502.
    2. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    3. Kaplan, Jonathan D. & Norton, Max & Baumgartner, Kendra, 2018. "An ounce of prevention and a pound of cure: the substitutability or complementarity of grapevine trunk disease management practices," 2018 Annual Meeting, August 5-7, Washington, D.C. 274361, Agricultural and Applied Economics Association.
    4. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    5. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    6. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    7. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    8. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    9. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    10. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    11. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    12. Robert Koulish, 2016. "Using Risk to Assess the Legal Violence of Mandatory Detention," Laws, MDPI, vol. 5(3), pages 1-20, July.
    13. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    15. Liu, Chengyun & Su, Kun & Zhang, Miaomiao, 2021. "Water disclosure and financial reporting quality for social changes: Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    16. Song, Malin & Du, Juntao & Tan, Kim Hua, 2018. "Impact of fiscal decentralization on green total factor productivity," International Journal of Production Economics, Elsevier, vol. 205(C), pages 359-367.
    17. Qinren Shi & Bo Zheng & Yixuan Zheng & Dan Tong & Yang Liu & Hanchen Ma & Chaopeng Hong & Guannan Geng & Dabo Guan & Kebin He & Qiang Zhang, 2022. "Co-benefits of CO2 emission reduction from China’s clean air actions between 2013-2020," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Qianyu Zhao & Boyu Xie & Mengyao Han, 2023. "Unpacking the Sub-Regional Spatial Network of Land-Use Carbon Emissions: The Case of Sichuan Province in China," Land, MDPI, vol. 12(10), pages 1-22, October.
    19. Yu, Xiaohong & Xu, Haiyan & Lou, Wengao & Xu, Xun & Shi, Victor, 2023. "Examining energy eco-efficiency in China's logistics industry," International Journal of Production Economics, Elsevier, vol. 258(C).
    20. Marius Dan Gavriletea, 2017. "Environmental Impacts of Sand Exploitation. Analysis of Sand Market," Sustainability, MDPI, vol. 9(7), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:104-:d:87609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.