IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v34y2014icp409-429.html
   My bibliography  Save this article

A review on optimized control systems for building energy and comfort management of smart sustainable buildings

Author

Listed:
  • Shaikh, Pervez Hameed
  • Nor, Nursyarizal Bin Mohd
  • Nallagownden, Perumal
  • Elamvazuthi, Irraivan
  • Ibrahim, Taib

Abstract

Buildings all around the world consume a significant amount of energy, which is more or less one-third of the total primary energy resources. This has raised concerns over energy supplies, rapid energy resource depletion, rising building service demands, improved comfort life styles along with the increased time spent in buildings; consequently, this has shown a rising energy demand in the near future. However, contemporary buildings’ energy efficiency has been fast tracked solution to cope/limit the rising energy demand of this sector. Building energy efficiency has turned out to be a multi-faceted problem, when provided with the limitation for the satisfaction of the indoor comfort index. However, the comfort level for occupants and their behavior have a significant effect on the energy consumption pattern. It is generally perceived that energy unaware activities can also add one-third to the building’s energy performance. Researchers and investigators have been working with this issue for over a decade; yet it remains a challenge. This review paper presents a comprehensive and significant research conducted on state-of-the-art intelligent control systems for energy and comfort management in smart energy buildings (SEB’s). It also aims at providing a building research community for better understanding and up-to-date knowledge for energy and comfort related trends and future directions. The main table summarizes 121 works closely related to the mentioned issue. Key areas focused on include comfort parameters, control systems, intelligent computational methods, simulation tools, occupants’ behavior and preferences, building types, supply source considerations and countries research interest in this sector. Trends for future developments and existing research in this area have been broadly studied and depicted in a graphical layout. In addition, prospective future advancements and gaps have also been discussed comprehensively.

Suggested Citation

  • Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
  • Handle: RePEc:eee:rensus:v:34:y:2014:i:c:p:409-429
    DOI: 10.1016/j.rser.2014.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114001889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    2. Goyal, Siddharth & Ingley, Herbert A. & Barooah, Prabir, 2013. "Occupancy-based zone-climate control for energy-efficient buildings: Complexity vs. performance," Applied Energy, Elsevier, vol. 106(C), pages 209-221.
    3. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    4. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    5. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    6. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    7. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    8. Dounis, A. I. & Manolakis, D. E., 2001. "Design of a fuzzy system for living space thermal-comfort regulation," Applied Energy, Elsevier, vol. 69(2), pages 119-144, June.
    9. Dixon, Robert K. & McGowan, Elizabeth & Onysko, Ganna & Scheer, Richard M., 2010. "US energy conservation and efficiency policies: Challenges and opportunities," Energy Policy, Elsevier, vol. 38(11), pages 6398-6408, November.
    10. Wang, Nan & Zhang, Jiangfeng & Xia, Xiaohua, 2013. "Desiccant wheel thermal performance modeling for indoor humidity optimal control," Applied Energy, Elsevier, vol. 112(C), pages 999-1005.
    11. Bojic, Milorad & Nikolic, Novak & Nikolic, Danijela & Skerlic, Jasmina & Miletic, Ivan, 2011. "Toward a positive-net-energy residential building in Serbian conditions," Applied Energy, Elsevier, vol. 88(7), pages 2407-2419, July.
    12. Mathews, E. H. & Arndt, D. C. & Piani, C. B. & van Heerden, E., 2000. "Developing cost efficient control strategies to ensure optimal energy use and sufficient indoor comfort," Applied Energy, Elsevier, vol. 66(2), pages 135-159, June.
    13. Rezvan, A. Taghipour & Gharneh, N. Shams & Gharehpetian, G.B., 2012. "Robust optimization of distributed generation investment in buildings," Energy, Elsevier, vol. 48(1), pages 455-463.
    14. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    15. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    2. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    3. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    4. Mostafaeipour, Ali & Bardel, Behnoosh & Mohammadi, Kasra & Sedaghat, Ahmad & Dinpashoh, Yagob, 2014. "Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 12-19.
    5. Ifrah Tahir & Ali Nasir & Abdullah Algethami, 2022. "Optimal Control Policy for Energy Management of a Commercial Bank," Energies, MDPI, vol. 15(6), pages 1-19, March.
    6. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.
    7. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    8. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    9. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    10. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    11. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    12. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    13. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    14. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    15. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    16. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    17. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    18. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    19. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    20. Read, Laura & Madani, Kaveh & Mokhtari, Soroush & Hanks, Catherine, 2017. "Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty," Energy, Elsevier, vol. 119(C), pages 744-753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:34:y:2014:i:c:p:409-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.