IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v112y2016icp15-36.html
   My bibliography  Save this article

Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries

Author

Listed:
  • van Ruijven, Bas J.
  • van Vuuren, Detlef P.
  • Boskaljon, Willem
  • Neelis, Maarten L.
  • Saygin, Deger
  • Patel, Martin K.

Abstract

This paper presents a global simulation-model for the steel and cement industries. The model covers the full modelling chain from economic activity, to materials consumption, trade, technology choice, production capacity, energy use and CO2 emissions. Without climate policy, the future projections based on the SSP2 scenario show a rapid increase in the consumption of steel and cement over the next few decades, after which demand levels are projected to stabilize. This implies that over the scenario period, CO2 emissions are projected to peak in the next decades followed by a decrease below 2010 levels in 2050. There is considerable scope to mitigate CO2 emissions from steel and cement industries, leading to resp. 80–90% and 40–80% reduction below 2010 in 2050 for a high carbon tax of 100 $/tCO2+4%pa depending on the availability of Carbon Capture and Sequestration (CCS).

Suggested Citation

  • van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
  • Handle: RePEc:eee:recore:v:112:y:2016:i:c:p:15-36
    DOI: 10.1016/j.resconrec.2016.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916301008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gielen, Dolf & Moriguchi, Yuichi, 2002. "CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials," Energy Policy, Elsevier, vol. 30(10), pages 849-863, August.
    2. van Vuuren, D. P. & Strengers, B. J. & De Vries, H. J. M., 1999. "Long-term perspectives on world metal use--a system-dynamics model," Resources Policy, Elsevier, vol. 25(4), pages 239-255, December.
    3. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    4. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    5. Hidalgo, Ignacio & Szabo, Laszlo & Carlos Ciscar, Juan & Soria, Antonio, 2005. "Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model," Energy, Elsevier, vol. 30(5), pages 583-610.
    6. Groenenberg, Heleen & Blok, Kornelis & van der Sluijs, Jeroen, 2005. "Projection of energy-intensive material production for bottom-up scenario building," Ecological Economics, Elsevier, vol. 53(1), pages 75-99, April.
    7. Dutta, Monica & Mukherjee, Saptarshi, 2010. "An outlook into energy consumption in large scale industries in India: The cases of steel, aluminium and cement," Energy Policy, Elsevier, vol. 38(11), pages 7286-7298, November.
    8. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    9. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
    10. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    11. Milford, Rachel L. & Allwood, Julian M. & Cullen, Jonathan M., 2011. "Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors," Resources, Conservation & Recycling, Elsevier, vol. 55(12), pages 1185-1195.
    12. Pardo, Nicolás & Moya, José Antonio & Mercier, Arnaud, 2011. "Prospective on the energy efficiency and CO2 emissions in the EU cement industry," Energy, Elsevier, vol. 36(5), pages 3244-3254.
    13. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    14. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    15. Clarke, Leon & McFarland, James & Octaviano, Claudia & van Ruijven, Bas & Beach, Robert & Daenzer, Kathryn & Herreras Martínez, Sara & Lucena, André F.P. & Kitous, Alban & Labriet, Maryse & Loboguerre, 2016. "Long-term abatement potential and current policy trajectories in Latin American countries," Energy Economics, Elsevier, vol. 56(C), pages 513-525.
    16. Akashi, Osamu & Hanaoka, Tatsuya & Matsuoka, Yuzuru & Kainuma, Mikiko, 2011. "A projection for global CO2 emissions from the industrial sector through 2030 based on activity level and technology changes," Energy, Elsevier, vol. 36(4), pages 1855-1867.
    17. Rootzén, Johan & Johnsson, Filip, 2013. "Exploring the limits for CO2 emission abatement in the EU power and industry sectors—Awaiting a breakthrough," Energy Policy, Elsevier, vol. 59(C), pages 443-458.
    18. Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
    19. Oda, Junichiro & Akimoto, Keigo & Sano, Fuminori & Tomoda, Toshimasa, 2007. "Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector," Energy Economics, Elsevier, vol. 29(4), pages 868-888, July.
    20. Yellishetty, Mohan & Ranjith, P.G. & Tharumarajah, A., 2010. "Iron ore and steel production trends and material flows in the world: Is this really sustainable?," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1084-1094.
    21. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    22. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    23. World Bank, 2014. "World Development Indicators 2014," World Bank Publications - Books, The World Bank Group, number 18237, December.
    24. Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
    25. Bastien Girod & Detlef Vuuren & Maria Grahn & Alban Kitous & Son Kim & Page Kyle, 2013. "Climate impact of transportation A model comparison," Climatic Change, Springer, vol. 118(3), pages 595-608, June.
    26. van Ruijven, Bas J. & Schers, Jules & van Vuuren, Detlef P., 2012. "Model-based scenarios for rural electrification in developing countries," Energy, Elsevier, vol. 38(1), pages 386-397.
    27. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    28. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    29. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    30. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    2. Matilda Axelson & Sebastian Oberthür & Lars J. Nilsson, 2021. "Emission reduction strategies in the EU steel industry: Implications for business model innovation," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 390-402, April.
    3. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    4. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Jafari, Mohammad & Cao, Shuang Cindy & Jung, Jongwon, 2017. "Geological CO2 sequestration in saline aquifers: Implication on potential solutions of China’s power sector," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 137-155.
    6. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    7. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    8. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    9. Olga Lingaitiene & Aurelija Burinskiene, 2024. "Development of Trade in Recyclable Raw Materials: Transition to a Circular Economy," Economies, MDPI, vol. 12(2), pages 1-24, February.
    10. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    11. Chiara Passoni & Elisabetta Palumbo & Rui Pinho & Alessandra Marini, 2022. "The LCT Challenge: Defining New Design Objectives to Increase the Sustainability of Building Retrofit Interventions," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    12. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    13. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    15. Müller-Casseres, Eduardo & Edelenbosch, Oreane Y. & Szklo, Alexandre & Schaeffer, Roberto & van Vuuren, Detlef P., 2021. "Global futures of trade impacting the challenge to decarbonize the international shipping sector," Energy, Elsevier, vol. 237(C).
    16. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    17. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    18. Carvalho, S.Z. & Vernilli, F. & Almeida, B. & Demarco, M. & Silva, S.N., 2017. "The recycling effect of BOF slag in the portland cement properties," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 216-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
    2. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    3. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
    5. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    6. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    7. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    8. Li Li & Yalin Lei & Dongyang Pan, 2016. "Study of CO 2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 957-970, March.
    9. Hsu, Chung-Chun & Lo, Shang-Lien, 2017. "The potential for carbon abatement in Taiwan’s steel industry and an analysis of carbon abatement trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1312-1323.
    10. Edelenbosch, OY & Rovelli, D & Levesque, A & Marangoni, G & Tavoni, M, 2021. "Long term, cross-country effects of buildings insulation policies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    11. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    12. Xuan, Yanni & Yue, Qiang, 2016. "Forecast of steel demand and the availability of depreciated steel scrap in China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 1-12.
    13. van Ruijven, Bas J. & Daenzer, Katie & Fisher-Vanden, Karen & Kober, Tom & Paltsev, Sergey & Beach, Robert H. & Calderon, Silvia Liliana & Calvin, Kate & Labriet, Maryse & Kitous, Alban & Lucena, Andr, 2016. "Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions," Energy Economics, Elsevier, vol. 56(C), pages 499-512.
    14. van Ruijven, Bas J. & O’Neill, Brian C. & Chateau, Jean, 2015. "Methods for including income distribution in global CGE models for long-term climate change research," Energy Economics, Elsevier, vol. 51(C), pages 530-543.
    15. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    16. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    17. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    18. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    19. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & Mima, Silvana & van Vuuren, Detlef P. & Worrell, Ernst, 2019. "The scope for better industry representation in long-term energy models: Modeling the cement industry," Applied Energy, Elsevier, vol. 240(C), pages 964-985.
    20. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:112:y:2016:i:c:p:15-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.