IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v121y2017icp137-155.html
   My bibliography  Save this article

Geological CO2 sequestration in saline aquifers: Implication on potential solutions of China’s power sector

Author

Listed:
  • Jafari, Mohammad
  • Cao, Shuang Cindy
  • Jung, Jongwon

Abstract

The rapid growth of energy demands in China surpasses the progress of introducing new clean energy sources. China has relied upon fossil fuel for several decades, which caused China to produce the largest CO2 emission and to influence climate change in the world. Thus, China’s fossil fuel-dependent power sector needs to reduce CO2 emission. Carbon capture and storage (CCS) is one of the solutions to decrease CO2 emission, and geological CO2 sequestration (GCS) is recommended considering its high potential and effectiveness. In this study, the efforts to implement geological CO2 sequestration in China are reviewed, and current technical issues are addressed. The potential storage candidates including depleted oil and gas reservoirs, unminable coal seams, saline aquifers, and hydrate bearing sediments are introduced with the data collected from the pilot, demonstration, and large-scale projects in China. Among potential sites, saline aquifers have been considered as sites with the highest potential for CO2 storage in China because of their enormous capacity. Main trapping mechanisms including structural-, capillary residual-, solubility- and mineral-trappings support saline aquifers as the most possible CO2 storage site. Also, CO2 injectivity and CO2-brine displacement efficiency in saline aquifers are explored to improve the efficiency of CO2 injection with current techniques including visualizing experimental testing method for two-phase immiscible flow such as microfluidic model and X-ray computed tomography (X-CT) method. Finally, regulatory acts in China are explained as the potential rules for monitoring the safety of the GCS projects in China.

Suggested Citation

  • Jafari, Mohammad & Cao, Shuang Cindy & Jung, Jongwon, 2017. "Geological CO2 sequestration in saline aquifers: Implication on potential solutions of China’s power sector," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 137-155.
  • Handle: RePEc:eee:recore:v:121:y:2017:i:c:p:137-155
    DOI: 10.1016/j.resconrec.2016.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916301240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juntueng, Sirintip & Towprayoon, Sirintornthep & Chiarakorn, Siriluk, 2014. "Energy and carbon dioxide intensity of Thailand's steel industry and greenhouse gas emission projection toward the year 2050," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 46-56.
    2. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.
    3. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    4. Jian Xie & Keni Zhang & Litang Hu & Yongsheng Wang & Maoshan Chen, 2015. "Understanding the carbon dioxide sequestration in low‐permeability saline aquifers in the Ordos Basin with numerical simulations," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(5), pages 558-576, October.
    5. Holloway, S., 2005. "Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option," Energy, Elsevier, vol. 30(11), pages 2318-2333.
    6. Wang, Yuan & Wang, Yichen & Zhou, Jing & Zhu, Xiaodong & Lu, Genfa, 2011. "Energy consumption and economic growth in China: A multivariate causality test," Energy Policy, Elsevier, vol. 39(7), pages 4399-4406, July.
    7. Prabu, V. & Mallick, Nirmal, 2015. "Coalbed methane with CO2 sequestration: An emerging clean coal technology in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 229-244.
    8. Lembke B., 1918. "√ a. p," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 111(1), pages 709-712, February.
    9. Stern, David I., 2000. "A multivariate cointegration analysis of the role of energy in the US macroeconomy," Energy Economics, Elsevier, vol. 22(2), pages 267-283, April.
    10. Singh, Bhawna & Bouman, Evert A. & Strømman, Anders H. & Hertwich, Edgar G., 2015. "Material use for electricity generation with carbon dioxide capture and storage: Extending life cycle analysis indices for material accounting," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 49-57.
    11. Oh, Wankeun & Lee, Kihoon, 2004. "Causal relationship between energy consumption and GDP revisited: the case of Korea 1970-1999," Energy Economics, Elsevier, vol. 26(1), pages 51-59, January.
    12. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    13. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    14. Holloway, S. & Pearce, J.M. & Hards, V.L. & Ohsumi, T. & Gale, J., 2007. "Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide," Energy, Elsevier, vol. 32(7), pages 1194-1201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    2. Zheng, Yawen & Gao, Lin & Li, Sheng & Wang, Dan, 2022. "A comprehensive evaluation model for full-chain CCUS performance based on the analytic hierarchy process method," Energy, Elsevier, vol. 239(PD).
    3. He, Gang & Zhang, Hongliang & Xu, Yuan & Lu, Xi, 2017. "China’s clean power transition: Current status and future prospect," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 3-10.
    4. Zhuo Li & Yanfang Lv & Bin Liu & Xiaofei Fu, 2023. "Reactive Transport Modeling of CO 2 -Brine–Rock Interaction on Long-Term CO 2 Sequestration in Shihezi Formation," Energies, MDPI, vol. 16(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    2. Sanu, Md Sahnewaz, 2019. "Re-examining the Environmental Kuznets Curve Hypothesis in India: The Role of Coal Consumption, Financial Development and Trade Openness," MPRA Paper 107845, University Library of Munich, Germany, revised Dec 2019.
    3. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    4. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    5. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    6. Mansoor Ahmed KOONDHAR & Lingling QIU & Houjian LI & Weiwei LIU & Ge HE, 2018. "A nexus between air pollution, energy consumption and growth of economy: A comparative study between the USA and China-based on the ARDL bound testing approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(6), pages 265-276.
    7. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    8. Shahbaz, Muhammad & Zakaria, Muhammad & Shahzad, Syed Jawad Hussain & Mahalik, Mantu Kumar, 2018. "The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach," Energy Economics, Elsevier, vol. 71(C), pages 282-301.
    9. Begum, Rawshan Ara & Sohag, Kazi & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "CO2 emissions, energy consumption, economic and population growth in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 594-601.
    10. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    11. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    12. Michael McAleer & Ha Minh Nguyen & Ngoc Hoang Bui & Duc Hong Vo, 2019. "Energy Consumption and Economic Growth: Evidence from Vietnam," Journal of Reviews on Global Economics, Lifescience Global, vol. 8, pages 350-361.
    13. Nasir, Muhammad & Ur Rehman, Faiz, 2011. "Environmental Kuznets Curve for carbon emissions in Pakistan: An empirical investigation," Energy Policy, Elsevier, vol. 39(3), pages 1857-1864, March.
    14. Rahman, Mohammad Mafizur, 2017. "Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 506-514.
    15. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    16. Gulasekaran Rajaguru & Safdar Ullah Khan, 2021. "Causality between Energy Consumption and Economic Growth in the Presence of Growth Volatility: Multi-Country Evidence," JRFM, MDPI, vol. 14(10), pages 1-26, October.
    17. Dergiades, Theologos & Martinopoulos, Georgios & Tsoulfidis, Lefteris, 2013. "Energy consumption and economic growth: Parametric and non-parametric causality testing for the case of Greece," Energy Economics, Elsevier, vol. 36(C), pages 686-697.
    18. Guangyu Luo & Jia-Hsi Weng & Qianxue Zhang & Yu Hao, 2017. "A reexamination of the existence of environmental Kuznets curve for CO2 emissions: evidence from G20 countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1023-1042, January.
    19. Konya Sevilay, 2022. "Panel Estimation of the Environmental Kuznets Curve for CO2 Emissions and Ecological Footprint: Environmental Sustainability in Developing Countries," Folia Oeconomica Stetinensia, Sciendo, vol. 22(2), pages 123-145, December.
    20. Rahman, Md Saifur & Junsheng, Ha & Shahari, Farihana & Aslam, Mohamed & Masud, Muhammad Mehedi & Banna, Hasanul & Liya, Ma, 2015. "Long-run relationship between sectoral productivity and energy consumption in Malaysia: An aggregated and disaggregated viewpoint," Energy, Elsevier, vol. 86(C), pages 436-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:121:y:2017:i:c:p:137-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.