IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3226-d767590.html
   My bibliography  Save this article

Application of Decoupling Approach to Evaluate Electricity Consumption, Agriculture, GDP, Crude Oil Production, and CO 2 Emission Nexus in Support of Economic Instrument in Nigeria

Author

Listed:
  • Mathy Sane

    (Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16 500 Praha-Suchdol, Czech Republic)

  • Miroslav Hajek

    (Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16 500 Praha-Suchdol, Czech Republic)

  • Joseph Phiri

    (Department of Economics, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 16 500 Praha-Suchdol, Czech Republic)

  • Jamilu Said Babangida

    (Department of Economics, Ahmadu Bello University, Zaria 810222, Nigeria
    Department of Economics, Yildiz Technical University, Istanbul 34220, Turkey)

  • Chukwudi Nwaogu

    (Department of Environmental Management, School of Environmental Sciences, Federal University of Technology, Owerri, P.M.B. 1526, Owerri 460114, Nigeria)

Abstract

The paper appraised the nexus between electricity consumption, agriculture, GDP, oil production, and carbon dioxide (CO 2 ) emissions in Nigeria using a decoupling approach. The result showed that agriculture, electricity, and GDP were predictive variables for CO 2 emissions in the Granger causality analysis. The relationship between GDP and CO 2 emissions also indicated that the amount of CO 2 released tends to rise as the economy’s output and industrial sectors grow, making GDP and CO 2 emissions increasingly relevant indicators as a driver of CO 2 emissions. Modern agriculture is reliant on large-scale use of fossil fuels and fertilizer production, as well as GHG emissions from crop and livestock production. However, increasing per capita real production can help to enhance quality of the environment, and speed up the uptake of renewable energy which can consequently help to ameliorate global warming. As a result of this study’s policy implications, policies in the agricultural sector that could combat CO 2 emissions, including deforestation, land clearing, fertilization with highly environmentally destructive chemicals, neglected integration of agroforestry, and social forestry practices, can help reduce CO 2 emissions in the agricultural sector. In addition, the study recommends that the financial markets’ monetary policy should regulate the GDP to charges to compensate for their various sectors’ contributions to CO 2 emissions. This investigation might help policymakers in Nigeria to define the CO 2 emission monetary and fiscal strategies. In addition, more alternative energy sources such as biofuels, hydropower, solar energy, and other renewable resources should be embraced in Nigeria as sustainable substitutes for fossil fuels.

Suggested Citation

  • Mathy Sane & Miroslav Hajek & Joseph Phiri & Jamilu Said Babangida & Chukwudi Nwaogu, 2022. "Application of Decoupling Approach to Evaluate Electricity Consumption, Agriculture, GDP, Crude Oil Production, and CO 2 Emission Nexus in Support of Economic Instrument in Nigeria," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3226-:d:767590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tetyana Vasylieva & Oleksii Lyulyov & Yuriy Bilan & Dalia Streimikiene, 2019. "Sustainable Economic Development and Greenhouse Gas Emissions: The Dynamic Impact of Renewable Energy Consumption, GDP, and Corruption," Energies, MDPI, vol. 12(17), pages 1-12, August.
    2. Al-mulali, Usama & Binti Che Sab, Che Normee, 2012. "The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries," Energy, Elsevier, vol. 39(1), pages 180-186.
    3. Goodness C. Aye & Prosper Ebruvwiyo Edoja, 2017. "Effect of economic growth on CO2 emission in developing countries: Evidence from a dynamic panel threshold model," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1379239-137, January.
    4. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    5. Chindo Sulaiman & A. S. Abdul-Rahim, 2018. "Population Growth and CO2 Emission in Nigeria: A Recursive ARDL Approach," SAGE Open, , vol. 8(2), pages 21582440187, April.
    6. Elum, Z.A., 2017. "A Review of Status and Potentials of Agriculture as a Renewable Energy Source in Climate Change Mitigation in Nigeria," Nigerian Agricultural Policy Research Journal (NAPReJ), Agricultural Policy Research Network (APRNet), vol. 2(1), August.
    7. Ito, Katsuya, 2017. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries," International Economics, Elsevier, vol. 151(C), pages 1-6.
    8. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    9. Mohammed Abumunshar & Mehmet Aga & Ahmed Samour, 2020. "Oil Price, Energy Consumption, and CO 2 Emissions in Turkey. New Evidence from a Bootstrap ARDL Test," Energies, MDPI, vol. 13(21), pages 1-15, October.
    10. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    11. Adedoyin Ramat Ayinde & Bilal Celik & Jelilov Gylych, 2019. "Effect of Economic Growth, Industrialization, and Urbanization on Energy Consumption in Nigeria: A Vector Error Correction Model Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 409-418.
    12. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    13. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    14. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    15. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    16. Henry Okodua, 2009. "Foreign Direct Investment and Economic Growth: Co-Integration and Casualty Analysis of Nigeria," The African Finance Journal, Africagrowth Institute, vol. 11(1), pages 54-73.
    17. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    18. Prosper Ebruvwiyo Edoja & Goodness C. Aye & Orefi Abu, 2016. "Dynamic relationship among CO2 emission, agricultural productivity and food security in Nigeria," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1204809-120, December.
    19. Ramphul Ohlan, 2015. "The impact of population density, energy consumption, economic growth and trade openness on CO 2 emissions in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1409-1428, November.
    20. Godwin Effiong Akpan & Usenobong Friday Akpan, 2012. "Electricity Consumption, Carbon Emissions and Economic Growth in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 2(4), pages 292-306.
    21. Sajjad Ali & Liu Ying & Tariq Shah & Azam Tariq & Abbas Ali Chandio & Ihsan Ali, 2019. "Analysis of the Nexus of CO 2 Emissions, Economic Growth, Land under Cereal Crops and Agriculture Value-Added in Pakistan Using an ARDL Approach," Energies, MDPI, vol. 12(23), pages 1-18, December.
    22. Jamiu Adetola Odugbesan & Husam Rjoub, 2020. "Relationship Among Economic Growth, Energy Consumption, CO2 Emission, and Urbanization: Evidence From MINT Countries," SAGE Open, , vol. 10(2), pages 21582440209, April.
    23. Pegels, Anna & Altenburg, Tilman, 2020. "Latecomer development in a “greening” world: Introduction to the Special Issue," World Development, Elsevier, vol. 135(C).
    24. Muis, Z.A. & Hashim, H. & Manan, Z.A. & Taha, F.M. & Douglas, P.L., 2010. "Optimal planning of renewable energy-integrated electricity generation schemes with CO2 reduction target," Renewable Energy, Elsevier, vol. 35(11), pages 2562-2570.
    25. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    26. Olusanya Elisa Olubusoye & Dasauki Musa & Salvatore Ercolano, 2020. "Carbon Emissions And Economic Growth In Africa: Are They Related?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1850400-185, January.
    27. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    28. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
    29. Ogunleye, Eric Kehinde, 2008. "Natural resource abundance in Nigeria: From dependence to development," Resources Policy, Elsevier, vol. 33(3), pages 168-174, September.
    30. Katsuya Ito, 2017. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries," International Economics, CEPII research center, issue 151, pages 1-6.
    31. Mohd Shahidan Shaari & Zulkefly Abdul Karim & Noorazeela Zainol Abidin, 2020. "The Effects of Energy Consumption and National Output on CO 2 Emissions: New Evidence from OIC Countries Using a Panel ARDL Analysis," Sustainability, MDPI, vol. 12(8), pages 1-12, April.
    32. Sharma, Gagan Deep & Tiwari, Aviral Kumar & Erkut, Burak & Mundi, Hardeep Singh, 2021. "Exploring the nexus between non-renewable and renewable energy consumptions and economic development: Evidence from panel estimations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Qiang & Liu, Xin & Wang, Wei-Guo & Xue, Jing, 2023. "Natural resources extraction and COP26 target: Evaluating the role of green finance," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahalik, Mantu Kumar & Villanthenkodath, Muhammed Ashiq & Mallick, Hrushikesh & Gupta, Monika, 2021. "Assessing the effectiveness of total foreign aid and foreign energy aid inflows on environmental quality in India," Energy Policy, Elsevier, vol. 149(C).
    2. Jamiu Adetola Odugbesan & Husam Rjoub, 2020. "Relationship Among Economic Growth, Energy Consumption, CO2 Emission, and Urbanization: Evidence From MINT Countries," SAGE Open, , vol. 10(2), pages 21582440209, April.
    3. Rahman, Mohammad Mafizur, 2017. "Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 506-514.
    4. Mohd Afjal & Chinnadurai Kathiravan & Leo Paul Dana & Chitra Devi Nagarajan, 2023. "The Dynamic Impact of Financial Technology and Energy Consumption on Environmental Sustainability," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    5. Sri Fadilah & Rini Lestari & Mohd Hadafi Sahdan & Ahmad Zamil Abdul Khalid, 2020. "The Impact of Renewable Energy Consumption on the Economic Growth of the ASEAN Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 602-608.
    6. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    7. Ika Agustina & Hendri Khuan & Bunga Aditi & Sunday Ade Sitorus & Trinandari Prasetya Nugrahanti, 2023. "Renewable Energy Mix Enhancement: The Power of Foreign Investment and Green Policies," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 370-380, November.
    8. Abdulsalam Altarhouni & Danbala Danju & Ahmed Samour, 2021. "Insurance Market Development, Energy Consumption, and Turkey’s CO 2 Emissions. New Perspectives from a Bootstrap ARDL Test," Energies, MDPI, vol. 14(23), pages 1-13, November.
    9. Ioannis Dokas & Minas Panagiotidis & Stephanos Papadamou & Eleftherios Spyromitros, 2022. "The Determinants of Energy and Electricity Consumption in Developed and Developing Countries: International Evidence," Energies, MDPI, vol. 15(7), pages 1-30, March.
    10. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    11. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    12. Chindo Sulaiman & A. S. Abdul-Rahim, 2018. "Population Growth and CO2 Emission in Nigeria: A Recursive ARDL Approach," SAGE Open, , vol. 8(2), pages 21582440187, April.
    13. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    14. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    15. Magazzino, Cosimo & Drago, Carlo & Schneider, Nicolas, 2023. "Evidence of supply security and sustainability challenges in Nigeria’s power sector," Utilities Policy, Elsevier, vol. 82(C).
    16. Shahzad, Syed Jawad Hussain & Kumar, Ronald Ravinesh & Zakaria, Muhammad & Hurr, Maryam, 2017. "Carbon emission, energy consumption, trade openness and financial development in Pakistan: A revisit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 185-192.
    17. Marius-Corneliu Marinaș & Marin Dinu & Aura-Gabriela Socol & Cristian Socol, 2018. "Renewable energy consumption and economic growth. Causality relationship in Central and Eastern European countries," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-29, October.
    18. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    19. Abdul Mansoor & Baserat Sultana, 2018. "Impact of Population, GDP and Energy Consumption on Carbon Emissions: Evidence from Pakistan Using an Analytic Tool IPAT," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 5(2), pages 183-190.
    20. Shahbaz, Muhammad & Sharma, Rajesh & Sinha, Avik & Jiao, Zhilun, 2021. "Analyzing nonlinear impact of economic growth drivers on CO2 emissions: Designing an SDG framework for India," Energy Policy, Elsevier, vol. 148(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3226-:d:767590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.