IDEAS home Printed from https://ideas.repec.org/p/fip/fedfwp/2013-28.html
   My bibliography  Save this paper

Doubts and Variability: A Robust Perspective on Exotic Consumption Series

Author

Listed:
  • Bidder, Rhys

    () (Federal Reserve Bank of San Francisco)

  • Smith, Matthew E.

    (Hutchin Hill Capital)

Abstract

In order for consumption based asset pricing models to reconcile data on returns with that on consumption, researchers have resorted to augmenting the consumption series in exotic ways. When an agent’s consumption series is subject to changes in volatility, we show that concerns for model misspecification can induce fears of both disasters and long run risk. We appeal to this pessimistic view to explain why introducing stochastic volatility in the presence of model uncertainty helps generate a more plausible unconditional market price of risk and time variation in the conditional market price of risk. Our analysis is based on a parameterization derived from Bayesian estimation of our stochastic volatility model using US consumption data.

Suggested Citation

  • Bidder, Rhys & Smith, Matthew E., 2013. "Doubts and Variability: A Robust Perspective on Exotic Consumption Series," Working Paper Series 2013-28, Federal Reserve Bank of San Francisco, revised 23 Sep 2015.
  • Handle: RePEc:fip:fedfwp:2013-28
    DOI: 10.24148/wp2013-28
    as

    Download full text from publisher

    File URL: http://www.frbsf.org/economic-research/files/wp2013-28.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    2. David Backus & Mikhail Chernov & Ian Martin, 2011. "Disasters Implied by Equity Index Options," Journal of Finance, American Finance Association, vol. 66(6), pages 1969-2012, December.
    3. Tomasz Strzalecki, 2011. "Axiomatic Foundations of Multiplier Preferences," Econometrica, Econometric Society, vol. 79(1), pages 47-73, January.
    4. Pierre Collin-Dufresne & Michael Johannes & Lars A. Lochstoer, 2013. "Parameter Learning in General Equilibrium: The Asset Pricing Implications," NBER Working Papers 19705, National Bureau of Economic Research, Inc.
    5. Andreas Fuster & Benjamin Hebert & David Laibson, 2012. "Natural Expectations, Macroeconomic Dynamics, and Asset Pricing," NBER Macroeconomics Annual, University of Chicago Press, vol. 26(1), pages 1-48.
    6. Boyarchenko, Nina, 2012. "Ambiguity shifts and the 2007–2008 financial crisis," Journal of Monetary Economics, Elsevier, vol. 59(5), pages 493-507.
    7. Isaac Kleshchelski & Nicolas Vincent, 2007. "Robust Equilibrium Yield Curves," Cahiers de recherche 08-02, HEC Montréal, Institut d'économie appliquée.
    8. Rhys Bidder & Ian Dew-Becker, 2016. "Long-Run Risk Is the Worst-Case Scenario," American Economic Review, American Economic Association, vol. 106(9), pages 2494-2527, September.
    9. Robert J. Barro & Jose F. Ursua, 2008. "Consumption Disasters in the Twentieth Century," American Economic Review, American Economic Association, vol. 98(2), pages 58-63, May.
    10. Francois Gourio, 2012. "Disaster Risk and Business Cycles," American Economic Review, American Economic Association, vol. 102(6), pages 2734-2766, October.
    11. Larry G. Epstein & Martin Schneider, 2008. "Ambiguity, Information Quality, and Asset Pricing," Journal of Finance, American Finance Association, vol. 63(1), pages 197-228, February.
    12. Breuer, Thomas & Csiszár, Imre, 2013. "Systematic stress tests with entropic plausibility constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1552-1559.
    13. David Backus & Mikhail Chernov & Stanley Zin, 2014. "Sources of Entropy in Representative Agent Models," Journal of Finance, American Finance Association, vol. 69(1), pages 51-99, February.
    14. Mariano M. Croce & Martin Lettau & Sydney C. Ludvigson, 2015. "Investor Information, Long-Run Risk, and the Term Structure of Equity," Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 706-742.
    15. Ravi Bansal & Amir Yaron, 2004. "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles," Journal of Finance, American Finance Association, vol. 59(4), pages 1481-1509, August.
    16. Lars Peter Hansen & Thomas J. Sargent, 2010. "Fragile beliefs and the price of uncertainty," Quantitative Economics, Econometric Society, vol. 1(1), pages 129-162, July.
    17. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    18. Lars Peter Hansen & John C. Heaton & Nan Li, 2008. "Consumption Strikes Back? Measuring Long-Run Risk," Journal of Political Economy, University of Chicago Press, vol. 116(2), pages 260-302, April.
    19. Jessica A. Wachter, 2013. "Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility?," Journal of Finance, American Finance Association, vol. 68(3), pages 987-1035, June.
    20. Nengjiu Ju & Jianjun Miao, 2012. "Ambiguity, Learning, and Asset Returns," Econometrica, Econometric Society, vol. 80(2), pages 559-591, March.
    21. Lettau, Martin & Wachter, Jessica A., 2011. "The term structures of equity and interest rates," Journal of Financial Economics, Elsevier, vol. 101(1), pages 90-113, July.
    22. Nicholas Bloom & Max Floetotto & Nir Jaimovich & Itay Saporta-Eksten & Stephen J. Terry, 2012. "Really Uncertain Business Cycles," NBER Working Papers 18245, National Bureau of Economic Research, Inc.
    23. Beeler, Jason & Campbell, John Y., 2012. "The Long-Run Risks Model and Aggregate Asset Prices: An Empirical Assessment," Critical Finance Review, now publishers, vol. 1(1), pages 141-182, January.
    24. Rietz, Thomas A., 1988. "The equity risk premium a solution," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 117-131, July.
    25. Emi Nakamura & Jón Steinsson & Robert Barro & José Ursúa, 2013. "Crises and Recoveries in an Empirical Model of Consumption Disasters," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(3), pages 35-74, July.
    26. Rajnish Mehra, 2003. "The Equity Premium: Why is it a Puzzle?," NBER Working Papers 9512, National Bureau of Economic Research, Inc.
    27. Barillas, Francisco & Hansen, Lars Peter & Sargent, Thomas J., 2009. "Doubts or variability?," Journal of Economic Theory, Elsevier, vol. 144(6), pages 2388-2418, November.
    28. Itamar Drechsler & Amir Yaron, 2011. "What's Vol Got to Do with It," Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 1-45.
    29. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, Oxford University Press, vol. 127(2), pages 645-700.
    30. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    31. Bidder, R.M. & Smith, M.E., 2012. "Robust animal spirits," Journal of Monetary Economics, Elsevier, vol. 59(8), pages 738-750.
    32. TallariniJr., Thomas D., 2000. "Risk-sensitive real business cycles," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 507-532, June.
    33. Matthew Smith, 2012. "Estimating Nonlinear Economic Models Using Surrogate Transitions," 2012 Meeting Papers 494, Society for Economic Dynamics.
    34. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, Oxford University Press, vol. 121(3), pages 823-866.
    35. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    36. Andreasen, Martin M., 2010. "Stochastic volatility and DSGE models," Economics Letters, Elsevier, vol. 108(1), pages 7-9, July.
    37. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rhys Bidder & Ian Dew-Becker, 2016. "Long-Run Risk Is the Worst-Case Scenario," American Economic Review, American Economic Association, vol. 106(9), pages 2494-2527, September.
    2. Jaroslav Borovička & Lars Peter Hansen & José A. Scheinkman, 2016. "Misspecified Recovery," Journal of Finance, American Finance Association, vol. 71(6), pages 2493-2544, December.
    3. Emi Nakamura & Dmitriy Sergeyev & Jón Steinsson, 2017. "Growth-Rate and Uncertainty Shocks in Consumption: Cross-Country Evidence," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(1), pages 1-39, January.
    4. Andrew McKenna & Rhys Bidder, 2014. "Robust Stress Testing," 2014 Meeting Papers 853, Society for Economic Dynamics.
    5. Demian Pouzo & Ignacio Presno, 2015. "Sovereign Default Risk and Uncertainty Premia," Papers 1512.06960, arXiv.org.
    6. Demian Pouzo & Ignacio Presno, 2016. "Sovereign Default Risk and Uncertainty Premia," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(3), pages 230-266, July.
    7. Bidder, Rhys & Dew-Becker, Ian, 2014. "Long-Run Risk is the Worst-Case Scenario: Ambiguity Aversion and Non-Parametric Estimation of the Endowment Process," Working Paper Series 2014-16, Federal Reserve Bank of San Francisco, revised 04 May 2016.

    More about this item

    Keywords

    Consumption (Economics);

    JEL classification:

    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedfwp:2013-28. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Federal Reserve Bank of San Francisco Research Library). General contact details of provider: http://edirc.repec.org/data/frbsfus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.