Author
Listed:
- Paul Glasserman
- Xingbo Xu
Abstract
Financial risk measurement relies on models of prices and other market variables, but models inevitably rely on imperfect assumptions and estimates, creating model risk. Moreover, optimization decisions, such as portfolio selection, amplify the effect of model error. In this work, we develop a framework for quantifying the impact of model error and for measuring and minimizing risk in a way that is robust to model error. This robust approach starts from a baseline model and finds the worst-case error in risk measurement that would be incurred through a deviation from the baseline model, given a precise constraint on the plausibility of the deviation. Using relative entropy to constrain model distance leads to an explicit characterization of worst-case model errors; this characterization lends itself to Monte Carlo simulation, allowing straightforward calculation of bounds on model error with very little computational effort beyond that required to evaluate performance under the baseline nominal model. This approach goes well beyond the effect of errors in parameter estimates to consider errors in the underlying stochastic assumptions of the model and to characterize the greatest vulnerabilities to error in a model. We apply this approach to problems of portfolio risk measurement, credit risk, delta hedging and counterparty risk measured through credit valuation adjustment.
Suggested Citation
Paul Glasserman & Xingbo Xu, 2014.
"Robust risk measurement and model risk,"
Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
Handle:
RePEc:taf:quantf:v:14:y:2014:i:1:p:29-58
DOI: 10.1080/14697688.2013.822989
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:1:p:29-58. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.