IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Implications of Return Predictability across Horizons for Asset Pricing Models

Listed author(s):
  • Favero, Carlo A.
  • Ortu, Fulvio
  • Tamoni, Andrea
  • Yang, Haoxi

We use the evidence on predictability of returns at diff erent horizons to discriminate among competing asset pricing models. Specifically, we employ predictors-based variance bounds, i.e. bounds on the variance of the Stochastic Discount Factors (SDFs) that price a given set of returns conditional on the information contained in a vector of return predictors. We show that return predictability delivers variance bounds that are much tighter than the classical, unconditional Hansen and Jagannathan (1991) bounds. We use the predictors-based bounds to discriminate among three leading classes of asset pricing models: rare disasters, long-run risks and external habit. We find that the rare disasters model of Nakamura, Steinsson, Barro, and Ursua (2013) is the best performer since it satisfies rather comfortably the predictors-based bounds at all horizons. As for long-run risks, while the classical version of Bansal and Yaron (2004) is the model most challenged by the introduction of conditioning information since it struggles to meet the bounds at all horizons, the more general version of Schorfheide, Song, and Yaron (2016), which accounts for multiple volatility components, satisfies the 1- and 5-year bounds as long as the set of test assets includes only equities and T-Bills. The Campbell and Cochrane (1999) habit model lies somehow in the middle: it performs quite well at our longest 5-year horizon while it struggles at the 1-year horizon. Finally, when the set of test assets is augmented with Treasury Bonds, the only model that is able to satisfy the predictors-based bounds is the rare disasters model

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=11645
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 11645.

as
in new window

Length:
Date of creation: Nov 2016
Handle: RePEc:cpr:ceprdp:11645
Contact details of provider: Postal:
Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.

Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Ravi Bansal & Ivan Shaliastovich, 2013. "A Long-Run Risks Explanation of Predictability Puzzles in Bond and Currency Markets," Review of Financial Studies, Society for Financial Studies, vol. 26(1), pages 1-33.
  2. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
  3. Campbell, John Y & Ammer, John, 1993. " What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns," Journal of Finance, American Finance Association, vol. 48(1), pages 3-37, March.
  4. Lars Peter Hansen & José A. Scheinkman, 2009. "Long-Term Risk: An Operator Approach," Econometrica, Econometric Society, vol. 77(1), pages 177-234, 01.
  5. Wayne E. Ferson & Andrew F. Siegel, 2003. "Stochastic Discount Factor Bounds with Conditioning Information," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 567-595.
  6. Cecchetti, Stephen G & Lam, Pok-sang & Mark, Nelson C, 1994. " Testing Volatility Restrictions on Intertemporal Marginal Rates of Substitution Implied by Euler Equations and Asset Returns," Journal of Finance, American Finance Association, vol. 49(1), pages 123-152, March.
  7. David Backus & Mikhail Chernov & Stanley Zin, 2014. "Sources of Entropy in Representative Agent Models," Journal of Finance, American Finance Association, vol. 69(1), pages 51-99, 02.
  8. Jerry Tsai & Jessica A. Wachter, 2015. "Disaster Risk and its Implications for Asset Pricing," NBER Working Papers 20926, National Bureau of Economic Research, Inc.
  9. Ravi Bansal & Amir Yaron, 2004. "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles," Journal of Finance, American Finance Association, vol. 59(4), pages 1481-1509, 08.
  10. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
  11. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
  12. John Y. Campbell & John H. Cochrane, 1994. "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," CRSP working papers 412, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
  13. Jessica A. Wachter, 2013. "Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility?," Journal of Finance, American Finance Association, vol. 68(3), pages 987-1035, 06.
  14. Wayne E. Ferson & Andrew F. Siegel, 2009. "Testing Portfolio Efficiency with Conditioning Information," Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2535-2558, July.
  15. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
  16. Jaroslav Borovička & Mark Hendricks & José A. Scheinkman, 2011. "Risk-Price Dynamics," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(1), pages 3-65, Winter.
    • Jaroslav Borovička & Lars Peter Hansen & Mark Hendricks & José A. Scheinkman, 2009. "Risk Price Dynamics," NBER Working Papers 15506, National Bureau of Economic Research, Inc.
    • Lars Peter Hansen & Jaroslav BoroviÄ ka & Mark Hendricks & José A. Scheinkman, 2010. "Risk Price Dynamics," Working Papers 2010-004, Becker Friedman Institute for Research In Economics.
    • Jaroslav Borovicka & Lars Peter Hansen & Mark Hendricks & Jose A. Scheinkman, 2009. "Risk Price Dynamics," Working Papers 1393, Princeton University, Department of Economics, Econometric Research Program..
  17. Beeler, Jason & Campbell, John Y., 2012. "The Long-Run Risks Model and Aggregate Asset Prices: An Empirical Assessment," Critical Finance Review, now publishers, vol. 1(1), pages 141-182, January.
  18. Rietz, Thomas A., 1988. "The equity risk premium a solution," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 117-131, July.
  19. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
  20. Martin Lettau, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, 06.
  21. Jerry Tsai & Jessica A. Wachter, 2015. "Disaster Risk and Its Implications for Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 219-252, December.
  22. Emi Nakamura & Jón Steinsson & Robert Barro & José Ursúa, 2013. "Crises and Recoveries in an Empirical Model of Consumption Disasters," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(3), pages 35-74, July.
  23. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
  24. Jerry Tsai, 2013. "Rare Disasters and the Term Structure of Interest Rates," Economics Series Working Papers 665, University of Oxford, Department of Economics.
  25. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, Oxford University Press, vol. 127(2), pages 645-700.
  26. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
  27. Bakshi, Gurdip & Chabi-Yo, Fousseni, 2012. "Variance bounds on the permanent and transitory components of stochastic discount factors," Journal of Financial Economics, Elsevier, vol. 105(1), pages 191-208.
  28. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
  29. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, Oxford University Press, vol. 121(3), pages 823-866.
  30. Burnside, Craig, 1994. "Hansen-Jagannathan Bounds as Classical Tests of Asset-Pricing Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(1), pages 57-79, January.
  31. Gourio, François, 2008. "Time-series predictability in the disaster model," Finance Research Letters, Elsevier, vol. 5(4), pages 191-203, December.
  32. Viceira, Luis M., 2012. "Bond risk, bond return volatility, and the term structure of interest rates," International Journal of Forecasting, Elsevier, vol. 28(1), pages 97-117.
  33. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
  34. Wachter, Jessica A., 2006. "A consumption-based model of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 79(2), pages 365-399, February.
  35. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
  36. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
  37. Geert Bekaert, 2004. "Conditioning Information and Variance Bounds on Pricing Kernels," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 339-378.
  38. Kirby, Chris, 1998. "The Restrictions on Predictability Implied by Rational Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, vol. 11(2), pages 343-382.
  39. Lars Peter Hansen, 2012. "Dynamic Valuation Decomposition Within Stochastic Economies," Econometrica, Econometric Society, vol. 80(3), pages 911-967, 05.
  40. Eric M. Aldrich, 2011. "Habit, Long-Run Risks, Prospect? A Statistical Inquiry," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(4), pages 589-618.
  41. Gallant, A. Ronald & Hansen, Lars Peter & Tauchen, George, 1990. "Using conditional moments of asset payoffs to infer the volatility of intertemporal marginal rates of substitution," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 141-179.
  42. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
  43. Frans de Roon & Marta Szymanowska, 2012. "Asset Pricing Restrictions on Predictability: Frictions Matter," Management Science, INFORMS, vol. 58(10), pages 1916-1932, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:11645. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.