IDEAS home Printed from https://ideas.repec.org/f/c/pka622.html
   My authors  Follow this author

Shinji Kaneko

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Fujii, Hidemichi & Managi, Shunsuke & Kaneko, Shinji, 2019. "Decomposition analysis of air pollution abatement in China: Empirical study for ten industrial sectors from 1998 to 2009," MPRA Paper 92234, University Library of Munich, Germany.

    Cited by:

    1. Peter Rafaj & Markus Amann, 2018. "Decomposing Air Pollutant Emissions in Asia: Determinants and Projections," Energies, MDPI, vol. 11(5), pages 1-14, May.
    2. Fujii, Hidemichi & Managi, Shunsuke, 2016. "Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors," MPRA Paper 69592, University Library of Munich, Germany.
    3. Huijuan Cao & Hidemichi Fujii & Shunsuke Managi, 2015. "A productivity analysis considering environmental pollution and diseases in China," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-19, December.
    4. Natnaporn Aeknarajindawat & Boonsri Suteerachai & Pornkul Suksod, 2020. "The Impact of Natural Resources, Renewable Energy, Economic Growth on Carbon Dioxide Emission in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 211-218.
    5. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Economic development and multiple air pollutant emissions from the industrial sector," MPRA Paper 67027, University Library of Munich, Germany.

  2. KANEKO Shinji & KAWATA Keisuke & YIN Ting, 2018. "Estimating Family Preferences for Elder-care Services: A conjoint-survey experiment in Japan," Discussion papers 18082, Research Institute of Economy, Trade and Industry (RIETI).

    Cited by:

    1. KANEKO Shinji & KAWATA Keisuke & YIN Ting, 2019. "Estimating Family Preference for Home Elderly-care Services: Large-scale Conjoint Survey Experiment in Japan," Discussion papers 19092, Research Institute of Economy, Trade and Industry (RIETI).

  3. Su Thet Hninn & Keisuke Kawata & Shinji Kaneko & Yuichiro Yoshida, 2016. "A nonparametric welfare analysis on water quality improvement of the floating people on Inlay Lake via a randomized conjoint field experiment," IDEC DP2 Series 6-2, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. Khan, Ghulam Dastgir & Yoshida, Yuichiro & Katayanagi, Mari & Hotak, Nematullah & Caro-Burnett, Johann, 2021. "Mining-induced displacement and resettlement in Afghanistan's Aynak mining community: Exploring the right to fair compensation," Resources Policy, Elsevier, vol. 74(C).

  4. Erik Armundito & Shinji Kaneko, 2014. "Note on Data Cleaning and Panel Data Development of Indonesian Manufacturing Survey Data," IDEC DP2 Series 4-9, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. Erik Armundito & Shinji Kaneko, 2015. "Baseline analysis of productivity changes with and without considering carbon dioxide emissions in the major manufacturing sector of Indonesia," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.

  5. Kimitaka Nishitani & Nurul Jannah & Hardinsyah Ridwan & Shinji Kaneko, 2013. "The Influence of Voluntary and Mandatory Environmental Performance on Financial Performance: An Empirical Study of Indonesian Firms," Discussion Paper Series DP2013-01, Research Institute for Economics & Business Administration, Kobe University.

    Cited by:

  6. Taro Ohdoko & Satoru Komatsu & Shinji Kaneko, 2012. "Residential preferences for stable electricity supply and a reduction in air pollution risk: A benefit transfer study using choice modeling in China," IDEC DP2 Series 2-12, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. Chiradip Chatterjee & Nafisa Halim & Pallab Mozumder, 2022. "Energy conservation and health risk reduction: an experimental investigation of punishing vs. rewarding incentives," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(4), pages 551-570, October.
    2. Anthony Boardman & Jeff Geng & Bruno Lam, 2020. "The Social Cost of Informal Electronic Waste Processing in Southern China," Administrative Sciences, MDPI, vol. 10(1), pages 1-20, February.

  7. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2012. "A general equilibrium analysis of the inflationary impact of energy subsidies reform in Iran," IDEC DP2 Series 2-8, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. H. Trypolska & O. Diachuk & R. Podolets & M. Chepeliev, 2018. "Biogas projects in Ukraine: prospects, consequences and regulatory policy," Economy and Forecasting, Valeriy Heyets, issue 2, pages 111-134.

  8. Satoru Komatsu & Hieu Dinh Ha & Shinji Kaneko, 2012. "Effects of Internal Migration on Residential Energy Consumption and CO2 Emissions in Hanoi," IDEC DP2 Series 2-17, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. Qiu Chen & Haoran Yang & Wenguo Wang & Tianbiao Liu, 2019. "Beyond the City: Effects of Urbanization on Rural Residential Energy Intensity and CO 2 Emissions," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    2. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    3. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    4. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).

  9. Fujii, Hidemichi & Iwata, Kazuyuki & Kaneko, Shinji & Managi, Shunsuke, 2012. "Corporate environmental and economic performances of Japanese manufacturing firms: Empirical study for sustainable development," MPRA Paper 39564, University Library of Munich, Germany.

    Cited by:

    1. Kazumi Endo, 2019. "Does the stock market value corporate environmental performance? Some perils of static regression models," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(6), pages 1530-1538, November.
    2. Younes Ben Zaied & Béchir Ben Lahouel, 2021. "Does environmental CSR performance matter for corporate financial performance? Evidence from panel quantile regression," Economics Bulletin, AccessEcon, vol. 41(3), pages 938-951.
    3. Giulio Cainelli & Massimiliano Mazzanti & Roberto Zoboli, 2013. "Environmental performance, manufacturing sectors and firm growth: structural factors and dynamic relationships," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 367-387, October.
    4. Jing Wang & Yunshi Mao, 2020. "Pains and gains of environmental management system certification for the sustainable development of manufacturing companies: Heterogeneous effects of industry peer learning," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2092-2109, July.
    5. Koji Takahashi & Junnosuke Shino, 2023. "Greenhouse gas emissions and bank lending," BIS Working Papers 1078, Bank for International Settlements.
    6. Weiwei Wu & Rizwan Ullah & Syed Jamal Shah, 2020. "Linking Corporate Environmental Performance to Financial Performance of Pakistani Firms: The Roles of Technological capability and Public awareness," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    7. Ki‐Hoon Lee & Beom Cheol Cin & Eui Young Lee, 2016. "Environmental Responsibility and Firm Performance: The Application of an Environmental, Social and Governance Model," Business Strategy and the Environment, Wiley Blackwell, vol. 25(1), pages 40-53, January.
    8. Kyohei Matsushita & Kota Asano, 2014. "Reducing CO 2 emissions of Japanese thermal power companies: a directional output distance function approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(1), pages 1-19, January.
    9. Al-Fakir Al Rabab'a, Eltayyeb & Rashid, Afzalur & Shams, Syed, 2023. "Corporate carbon performance and cost of debt: Evidence from Asia-Pacific countries," International Review of Financial Analysis, Elsevier, vol. 88(C).
    10. He, Zhenyu & Tang, Yuwei, 2023. "Local environmental constraints and firms’ export product quality: Evidence from China," Economic Modelling, Elsevier, vol. 124(C).
    11. Gianni Guastella & Matteo Mazzarano & Stefano Pareglio & Riccardo Christopher Spani, 2022. "Do environmental and emission disclosure affect firms’ performance?," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 695-718, December.
    12. Stefan Lewandowski, 2017. "Corporate Carbon and Financial Performance: The Role of Emission Reductions," Business Strategy and the Environment, Wiley Blackwell, vol. 26(8), pages 1196-1211, December.
    13. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2022. "Does primary stakeholder management improve competitiveness? A dynamic network non-parametric frontier approach," Economic Modelling, Elsevier, vol. 116(C).
    14. Dechezleprêtre, Antoine & Koźluk, Tomasz & Kruse, Tobias & Nachtigall, Daniel & De Serres, Alain, 2019. "Do environmental and economic performance go together? A review of micro-level empirical evidence from the past decade or so," LSE Research Online Documents on Economics 100900, London School of Economics and Political Science, LSE Library.
    15. Shengnan Li & Jianbo Niu & Sang-Bing Tsai, 2018. "Opportunism Motivation of Environmental Protection Activism and Corporate Governance: An Empirical Study from China," Sustainability, MDPI, vol. 10(6), pages 1-18, May.
    16. Surender Kumar & Pritika Dua, 2022. "Environmental management practices and financial performance: evidence from large listed Indian enterprises," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 65(1), pages 37-61, January.
    17. Chia-Chen Yang & Shang-Ling Ou & Li-Chang Hsu, 2019. "A Hybrid Multi-Criteria Decision-Making Model for Evaluating Companies’ Green Credit Rating," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    18. Rayenda Khresna Brahmana & Maria Kontesa, 2021. "Does clean technology weaken the environmental impact on the financial performance? Insight from global oil and gas companies," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 3411-3423, November.
    19. Mingfeng Tang & Grace Walsh & Daniel Lerner & Markus A. Fitza & Qiaohua Li, 2018. "Green Innovation, Managerial Concern and Firm Performance: An Empirical Study," Business Strategy and the Environment, Wiley Blackwell, vol. 27(1), pages 39-51, January.
    20. Md. Wahid Murad & Md. Mahmudul Alam & Md. Mazharul Islam, 2018. "Dynamics of Japan’s industrial production and carbon emissions: causality, long-term trend and implications," Letters in Spatial and Resource Sciences, Springer, vol. 11(2), pages 127-139, July.
    21. Misani, Nicola & Pogutz, Stefano, 2015. "Unraveling the effects of environmental outcomes and processes on financial performance: A non-linear approach," Ecological Economics, Elsevier, vol. 109(C), pages 150-160.
    22. Léopold Djoutsa Wamba & Jean‐Michel Sahut & Eric Braune & Frédéric Teulon, 2020. "Does the optimization of a company's environmental performance reduce its systematic risk? New evidence from European listed companies," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(4), pages 1677-1694, July.
    23. Claudia Arena & Giovanna Michelon, 2018. "A matter of control or identity? Family firms' environmental reporting decisions along the corporate life cycle," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1596-1608, December.
    24. Zhenghui Li & Gaoke Liao & Khaldoon Albitar, 2020. "Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1045-1055, March.
    25. Hengjie Xu & Qiang Mei & Fakhar Shahzad & Suxia Liu & Xingle Long & Jingjing Zhang, 2020. "Untangling the Impact of Green Finance on the Enterprise Green Performance: A Meta-Analytic Approach," Sustainability, MDPI, vol. 12(21), pages 1-16, October.
    26. Xiaoya Zhu & Yunli Zhu & Xiaohua Meng, 2021. "Government Environmental Information Disclosure and Environmental Performance: Evidence from China," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    27. Yagi, Michiyuki & Managi, Shunsuke, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," MPRA Paper 87891, University Library of Munich, Germany.
    28. Mohammed Bouaddi & Mohamed A. K. Basuony & Neveen Noureldin, 2023. "The Heterogenous Effects of Carbon Emissions and Board Gender Diversity on a Firm’s Performance," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    29. DeBoer, Jennifer & Panwar, Rajat & Kozak, Robert & Cashore, Benjamin, 2020. "Squaring the circle: Refining the competitiveness logic for the circular bioeconomy," Forest Policy and Economics, Elsevier, vol. 110(C).
    30. Pekovic, Sanja & Grolleau, Gilles & Mzoughi, Naoufel, 2018. "Environmental investments: Too much of a good thing?," International Journal of Production Economics, Elsevier, vol. 197(C), pages 297-302.
    31. Qiang Zhang & Yuan Ma & Qiyue Yin, 2019. "Environmental Management Breadth, Environmental Management Depth, and Manufacturing Performance," IJERPH, MDPI, vol. 16(23), pages 1-11, November.
    32. Sergio Manrique & Carmen-Pilar Martí-Ballester, 2017. "Analyzing the Effect of Corporate Environmental Performance on Corporate Financial Performance in Developed and Developing Countries," Sustainability, MDPI, vol. 9(11), pages 1-30, October.
    33. Mengxin Wang & Gaoke Liao & Yanling Li, 2021. "The Relationship between Environmental Regulation, Pollution and Corporate Environmental Responsibility," IJERPH, MDPI, vol. 18(15), pages 1-13, July.
    34. Lee, Ki-Hoon & Min, Byung & Yook, Keun-Hyo, 2015. "The impacts of carbon (CO2) emissions and environmental research and development (R&D) investment on firm performance," International Journal of Production Economics, Elsevier, vol. 167(C), pages 1-11.
    35. Yuan Ma & Qiang Zhang & Qiyue Yin, 2019. "Influence of Environmental Management on Green Process Innovation: Comparison of Multiple Mediating Effects Based on Routine Replication," IJERPH, MDPI, vol. 16(22), pages 1-13, November.
    36. Christoph Trumpp & Thomas Guenther, 2017. "Too Little or too much? Exploring U‐shaped Relationships between Corporate Environmental Performance and Corporate Financial Performance," Business Strategy and the Environment, Wiley Blackwell, vol. 26(1), pages 49-68, January.
    37. Kerstin Lopatta & Thomas Kaspereit & Sebastian A. Tideman & Anna R. Rudolf, 2022. "The moderating role of CEO sustainability reporting style in the relationship between sustainability performance, sustainability reporting, and cost of equity," Journal of Business Economics, Springer, vol. 92(3), pages 429-465, April.
    38. Muyao Li & Jinsong Zhang & Ramakrishnan Ramanathan & Ruiqian Li, 2020. "Opening the Black Box: The Impacts of Environmental Regulations on Technological Innovation," IJERPH, MDPI, vol. 17(12), pages 1-18, June.
    39. Xie, Jun & Nozawa, Wataru & Yagi, Michiyuki & Fujii, Hidemichi & Managi, Shunsuke, 2017. "Do environmental, social, and governance activities improve corporate financial performance?," MPRA Paper 88720, University Library of Munich, Germany, revised 25 Jun 2018.
    40. Jean-Michel Sahut & Eric Braune & Lubica Hikkerova & Léopold Djoutsa Wamba, 2020. "Environmental Performance and Risk of European Firms," Journal of Applied Management and Investments, Department of Business Administration and Corporate Security, International Humanitarian University, vol. 9(2), pages 85-104, June.
    41. Bai Xue & Zhuang Zhang & Pingli Li, 2020. "Corporate environmental performance, environmental management and firm risk," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1074-1096, March.
    42. Marta Arbelo-Pérez & Yaiza Armas-Cruz & Antonio Arbelo, 2022. "Environmental strategy and firm performance: A new methodological proposal," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(8), pages 283-292.
    43. Rogério João Lunkes & Fabricia Silva da Rosa & Januário José Monteiro & Daiane Antonini Bortoluzzi, 2020. "Interactions among Environmental Training, Environmental Strategic Planning and Personnel Controls in Radical Environmental Innovation," Sustainability, MDPI, vol. 12(20), pages 1-13, October.
    44. G Capece & F Di Pillo & M Gastaldi & N Levialdi & M Miliacca, 2017. "Examining the effect of managing GHG emissions on business performance," Business Strategy and the Environment, Wiley Blackwell, vol. 26(8), pages 1041-1060, December.
    45. Prasad, Mousami & Mishra, Trupti, 2017. "Low-carbon growth for Indian iron and steel sector: exploring the role of voluntary environmental compliance," Energy Policy, Elsevier, vol. 100(C), pages 41-50.
    46. Ruiqian Li & Ramakrishnan Ramanathan, 2018. "Impacts of Industrial Heterogeneity and Technical Innovation on the Relationship between Environmental Performance and Financial Performance," Sustainability, MDPI, vol. 10(5), pages 1-25, May.
    47. Hanne Knight & Phil Megicks & Sheela Agarwal & M.A.A.M. Leenders, 2019. "Firm resources and the development of environmental sustainability among small and medium‐sized enterprises: Evidence from the Australian wine industry," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 25-39, January.
    48. Wen-Hsiang Yu & Chuang-Chun Chiou, 2022. "Effects of Sustainable Development of the Logistics Industry by Cloud Operational System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    49. Prayag Lal Yadav & Seung Hun Han & Hohyun Kim, 2017. "Manager’s Dilemma: Stockholders’ and Consumers’ Responses to Corporate Environmental Efforts," Sustainability, MDPI, vol. 9(7), pages 1-14, June.
    50. Anrong Gao & Tianren Xiong & Yuxi Luo & Defeng Meng, 2023. "Promote or Crowd Out? The Impact of Environmental Information Disclosure Methods on Enterprise Value," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    51. Enrico Fontana & Hyemi Shin & Chikako Oka & Jos Gamble, 2022. "Tensions in the strategic integration of corporate sustainability through global standards: Evidence from Japan and South Korea," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 875-891, March.
    52. Wang, Quan-Jing & Wang, Hai-Jie & Chang, Chun-Ping, 2022. "Environmental performance, green finance and green innovation: What's the long-run relationships among variables?," Energy Economics, Elsevier, vol. 110(C).
    53. Yenny Naranjo Tuesta & Cristina Crespo Soler & Vicente Ripoll Feliu, 2020. "The Influence of Carbon Management on the Financial Performance of European Companies," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    54. Ajay Kumar & Jyotirani Gupta & Niladri Das, 2022. "Revisiting the influence of corporate sustainability practices on corporate financial performance: An evidence from the global energy sector," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3231-3253, November.
    55. Meltem Kılıç & Hasan Emin Gurler & Ahmet Kaya & Chang Won Lee, 2022. "The Impact of Sustainability Performance on Financial Performance: Does Firm Size Matter? Evidence from Turkey and South Korea," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    56. Wayne Fu & Che‐Ping (Jack) Su, 2021. "The implications of efficiency differences in sustainable development: An empirical study in the consumer product industry," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2489-2504, July.
    57. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Trends in corporate environmental management studies and databases," MPRA Paper 66531, University Library of Munich, Germany.
    58. Murad, Wahid & Alam, Md. Mahmudul & Islam, Mazharul, 2019. "Dynamics of Japan’s Industrial Production and CO2 Emissions: Causality, Long-Run Trend and Implication," SocArXiv zb2dv, Center for Open Science.
    59. Joaquín Cañón-de-Francia & Concepión Garcés-Ayerbe, 2019. "Factors and Contingencies for the “It Pays to Be Green Hypothesis”. The European Union’s Emissions Trading System (EU ETS) and Financial Crisis as Contexts," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    60. Eugenio D'Amico & Daniela Coluccia & Stefano Fontana & Silvia Solimene, 2016. "Factors Influencing Corporate Environmental Disclosure," Business Strategy and the Environment, Wiley Blackwell, vol. 25(3), pages 178-192, March.
    61. Yenny Naranjo Tuesta & Cristina Crespo Soler & Vicente Ripoll Feliu, 2021. "Carbon management accounting and financial performance: Evidence from the European Union emission trading system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1270-1282, February.
    62. Prayag Lal Yadav & Seung Hun Han & Jae Jeung Rho, 2016. "Impact of Environmental Performance on Firm Value for Sustainable Investment: Evidence from Large US Firms," Business Strategy and the Environment, Wiley Blackwell, vol. 25(6), pages 402-420, September.
    63. Roel Brouwers & Frederiek Schoubben & Cynthia Van Hulle, 2018. "The influence of carbon cost pass through on the link between carbon emission and corporate financial performance in the context of the European Union Emission Trading Scheme," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1422-1436, December.
    64. Carmen Pilar Marti & M. Rosa Rovira‐Val & Lisa G. J. Drescher, 2015. "Are Firms that Contribute to Sustainable Development Better Financially?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 22(5), pages 305-319, September.
    65. Obey Dzomonda & Olawale Fatoki, 2020. "Environmental Sustainability Commitment and Financial Performance of Firms Listed on the Johannesburg Stock Exchange (JSE)," IJERPH, MDPI, vol. 17(20), pages 1-21, October.
    66. Shoaib Aslam & Mohamed H. Elmagrhi & Ramiz Ur Rehman & Collins G. Ntim, 2021. "Environmental management practices and financial performance using data envelopment analysis in Japan: The mediating role of environmental performance," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 1655-1673, May.
    67. Rosa Maria Dangelico, 2015. "Improving Firm Environmental Performance and Reputation: The Role of Employee Green Teams," Business Strategy and the Environment, Wiley Blackwell, vol. 24(8), pages 735-749, December.
    68. Fujii, Hidemichi & Shirakawa, Seiji, 2015. "Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan," MPRA Paper 62790, University Library of Munich, Germany.
    69. Clarence Tolliver & Hidemichi Fujii & Alexander Ryota Keeley & Shunsuke Managi, 2021. "Green Innovation and Finance in Asia," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 67-87, January.
    70. Nazim Hussain & Ugo Rigoni & Elisa Cavezzali, 2018. "Does it pay to be sustainable? Looking inside the black box of the relationship between sustainability performance and financial performance," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 25(6), pages 1198-1211, November.
    71. Shivananda Shetty & Surender Kumar, 2017. "Are voluntary environment programs effective in improving the environmental performance: evidence from polluting Indian Industries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(4), pages 659-676, October.
    72. Hidemichi Fujii & Kimbara Tatsuo, 2012. "Environmental Management Mechanisms in U.S. and Japanese Manufacturing Firms," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 3(6), pages 13-24, November.
    73. Kounetas, Kostas & Alexopoulos, Elias & Tzelepis, Dimitris, 2016. "Environmental and Financial Performance. Is there a win-win or a win-loss situation? Evidence from the Greek manufacturing," MPRA Paper 80906, University Library of Munich, Germany, revised 19 Jul 2017.
    74. Fujii, Hidemichi & Assaf, A. George & Managi, Shunsuke & Matousek, Roman, 2015. "Did the Financial Crisis Affect Environmental Efficiency? Evidence from the Japanese Manufacturing Sector," MPRA Paper 66363, University Library of Munich, Germany.
    75. Claudio Nuber & Patrick Velte & Jacob Hörisch, 2020. "The curvilinear and time‐lagging impact of sustainability performance on financial performance: Evidence from Germany," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(1), pages 232-243, January.
    76. Zhifang Zhou & Tao Zhang & Kang Wen & Huixiang Zeng & Xiaohong Chen, 2018. "Carbon risk, cost of debt financing and the moderation effect of media attention: Evidence from Chinese companies operating in high‐carbon industries," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1131-1144, December.
    77. Khaled Alsaifi & Marwa Elnahass & Aly Salama, 2020. "Carbon disclosure and financial performance: UK environmental policy," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 711-726, February.
    78. Zhenghui Li & Yan Wang & Yong Tan & Zimei Huang, 2020. "Does Corporate Financialization Affect Corporate Environmental Responsibility? An Empirical Study of China," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    79. Muhammad Haseeb & Marcin Lis & Ilham Haouas & Leonardus WW Mihardjo, 2019. "The Mediating Role of Business Strategies between Management Control Systems Package and Firms Stability: Evidence from SMEs in Malaysia," Sustainability, MDPI, vol. 11(17), pages 1-20, August.
    80. Markus Hang & Jerome Geyer‐Klingeberg & Andreas W. Rathgeber, 2019. "It is merely a matter of time: A meta‐analysis of the causality between environmental performance and financial performance," Business Strategy and the Environment, Wiley Blackwell, vol. 28(2), pages 257-273, February.
    81. María del Mar Miras‐Rodríguez & Amalia Carrasco‐Gallego & Bernabé Escobar‐Pérez, 2015. "Has the CSR engagement of electrical companies had an effect on their performance? A closer look at the environment," Business Strategy and the Environment, Wiley Blackwell, vol. 24(8), pages 819-835, December.
    82. Shatha M. Obeidat & Anas A. Al Bakri & Said Elbanna, 2020. "Leveraging “Green” Human Resource Practices to Enable Environmental and Organizational Performance: Evidence from the Qatari Oil and Gas Industry," Journal of Business Ethics, Springer, vol. 164(2), pages 371-388, June.
    83. Garcés-Ayerbe, Concepción & Cañón-de-Francia, Joaquín, 2017. "The Relevance of Complementarities in the Study of the Economic Consequences of Environmental Proactivity: Analysis of the Moderating Effect of Innovation Efforts," Ecological Economics, Elsevier, vol. 142(C), pages 21-30.
    84. Qingxia (Jenny) Wang, 2023. "Financial effects of carbon risk and carbon disclosure: A review," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4175-4219, December.
    85. Francesca Di Pillo & Massimo Gastaldi & Nathan Levialdi & Michela Miliacca, 2017. "Environmental Performance Versus Economic-financial Performance: Evidence from Italian Firms," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 98-108.
    86. Andewi Rokhmawati, 2020. "Profit Decomposition: Analyzing the Pathway from Carbon Dioxide Emission Reduction to Revenues and Costs," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 150-160.
    87. Patrizia Fanasch, 2019. "Survival of the fittest: The impact of eco‐certification and reputation on firm performance," Business Strategy and the Environment, Wiley Blackwell, vol. 28(4), pages 611-628, May.
    88. Fernandez, Viviana, 2022. "Environmental management: Implications for business performance, innovation, and financing," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    89. Ryo Aruga & Keiichi Goshima & Takashi Chiba, 2022. "CO2 Emissions and Corporate Performance: Japan's Evidence with Double Machine Learning," IMES Discussion Paper Series 22-E-01, Institute for Monetary and Economic Studies, Bank of Japan.
    90. Ki‐Hoon Lee & Bum‐Jin Park & Hakjoon Song & Keun‐Hyo Yook, 2017. "The Value Relevance of Environmental Audits: Evidence from Japan," Business Strategy and the Environment, Wiley Blackwell, vol. 26(5), pages 609-625, July.
    91. Ben Lahouel, Béchir & Ben Zaied, Younes & Managi, Shunsuke & Taleb, Lotfi, 2022. "Re-thinking about U: The relevance of regime-switching model in the relationship between environmental corporate social responsibility and financial performance," Journal of Business Research, Elsevier, vol. 140(C), pages 498-519.
    92. Idoya Ferrero-Ferrero & María Ángeles Fernández-Izquierdo & María Jesús Muñoz-Torres, 2016. "The Effect of Environmental, Social and Governance Consistency on Economic Results," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    93. Xiang Deng & Li Li, 2020. "Promoting or Inhibiting? The Impact of Environmental Regulation on Corporate Financial Performance—An Empirical Analysis Based on China," IJERPH, MDPI, vol. 17(11), pages 1-17, May.
    94. Zhifang Zhou & Lingyan Zhang & Li Lin & Huixiang Zeng & Xiaohong Chen, 2020. "Carbon risk management and corporate competitive advantages: “Differential promotion” or “cost hindrance”?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(4), pages 1764-1784, May.
    95. Kun‐Shan Wu & Bao‐Guang Chang, 2022. "The concave–convex effects of environmental, social and governance on high‐tech firm value: Quantile regression approach," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(5), pages 1527-1545, September.
    96. Robin van Emous & Rytis Krušinskas & Wim Westerman, 2021. "Carbon Emissions Reduction and Corporate Financial Performance: The Influence of Country-Level Characteristics," Energies, MDPI, vol. 14(19), pages 1-19, September.
    97. Anton Shevchenko & Xiaodan Pan & Goran Calic, 2020. "Exploring the effect of environmental orientation on financial decisions of businesses at the bottom of the pyramid: Evidence from the microlending context," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 1876-1886, July.
    98. Jean D. Kabongo, 2019. "Sustainable development and research and development intensity in U.S. manufacturing firms," Business Strategy and the Environment, Wiley Blackwell, vol. 28(4), pages 556-566, May.
    99. Min Xue & Francis Boadu & Yu Xie, 2019. "The Penetration of Green Innovation on Firm Performance: Effects of Absorptive Capacity and Managerial Environmental Concern," Sustainability, MDPI, vol. 11(9), pages 1-24, April.
    100. Jialu Ma & Jeffrey Kuo, 2021. "Environmental self‐regulation for sustainable development: Can internal carbon pricing enhance financial performance?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 3517-3527, December.
    101. £ukasz Ma³ys, 2023. "The approach to supply chain cooperation in the implementation of sustainable development initiatives and company’s economic performance," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 18(1), pages 255-286, March.
    102. Suchismita Ghosh & Ritu Pareek & Tarak Nath Sahu, 2023. "U‐shaped relationship between environmental performance and financial performance of non‐financial companies: An empirical assessment," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(4), pages 1805-1815, July.
    103. Ayşe İrem Keskin & Banu Dincer & Caner Dincer, 2020. "Exploring the Impact of Sustainability on Corporate Financial Performance Using Discriminant Analysis," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    104. Seonghoon Kim & Ann Terlaak & Matthew Potoski, 2021. "Corporate sustainability and financial performance: Collective reputation as moderator of the relationship between environmental performance and firm market value," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 1689-1701, May.
    105. Mingxia Liu & Liqian Liu & Amei Feng, 2024. "The Impact of Green Innovation on Corporate Performance: An Analysis Based on Substantive and Strategic Green Innovations," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    106. Iker Laskurain & Ander Ibarloza & Ainara Larrea & Erlantz Allur, 2017. "Contribution to Energy Management of the Main Standards for Environmental Management Systems: The Case of ISO 14001 and EMAS," Energies, MDPI, vol. 10(11), pages 1-21, November.
    107. He-Boong Kwon & Jooh Lee & Laee Choi, 2023. "Dynamic interplay of environmental sustainability and corporate reputation: a combined parametric and nonparametric approach," Annals of Operations Research, Springer, vol. 324(1), pages 687-719, May.
    108. Qaisar Ali & Asma Salman & Shazia Parveen & Zaki Zaini, 2020. "Green Behavior and Financial Performance: Impact on the Malaysian Fashion Industry," SAGE Open, , vol. 10(3), pages 21582440209, September.

  10. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2012. "Spatial Spillover of Governance and Institutional Quality: A Spatial Econometric Approach," IDEC DP2 Series 2-3, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. Peiró-Palomino, Jesús & Perugini, Francesco, 2022. "Regional innovation disparities in Italy: The role of governance," Economic Systems, Elsevier, vol. 46(4).

  11. Phetkeo Poumanyvong & Shinji Kaneko & Shobhakar Dhakal, 2012. "Impacts of urbanization on national residential energy use and CO2 emissions: Evidence from low-, middle- and high-income countries," IDEC DP2 Series 2-5, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. Hu, Zongyi & Tang, Liwei, 2013. "Exploring the relation between urbanization and residential CO2 emissions in China: a PTR approach," MPRA Paper 55379, University Library of Munich, Germany.
    2. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    3. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    4. Du, Zhili & Lin, Boqiang, 2019. "Changes in automobile energy consumption during urbanization: Evidence from 279 cities in China," Energy Policy, Elsevier, vol. 132(C), pages 309-317.
    5. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    6. Koçak, Emrah & Önderol, Seyit & Khan, Kamran, 2021. "Structural change, modernization, total factor productivity, and natural resources sustainability: An assessment with quantile and non-quantile estimators," Resources Policy, Elsevier, vol. 74(C).
    7. Hu, Wei & Fan, Yuemin, 2020. "City size and energy conservation: Do large cities in China consume more energy?," Energy Economics, Elsevier, vol. 92(C).
    8. Hongzhong Fan & Md Ismail Hossain, 2018. "Technological Innovation, Trade Openness, CO2 Emission and Economic Growth: Comparative Analysis between China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 240-257.
    9. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Anwar, Ahsan & Siddique, Muhammad & Eyup Dogan, & Sharif, Arshian, 2021. "The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from Method of Moments Quantile Regression," Renewable Energy, Elsevier, vol. 164(C), pages 956-967.
    11. Hashemizadeh, Ali & Bui, Quocviet & Kongbuamai, Nattapan, 2021. "Unpacking the role of public debt in renewable energy consumption: New insights from the emerging countries," Energy, Elsevier, vol. 224(C).
    12. Shahbaz, Muhammad & Loganathan, Nanthakumar & Sbia, Rashid & Afza, Talat, 2015. "The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 683-693.
    13. Komal, Rabia & Abbas, Faisal, 2015. "Linking financial development, economic growth and energy consumption in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 211-220.
    14. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuloğlu, Ayhan, 2017. "The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity," Energy, Elsevier, vol. 133(C), pages 242-256.
    15. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    16. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    17. Liton Chandra Voumik & Mohammad Iqbal Hossain & Md. Hasanur Rahman & Raziya Sultana & Rahi Dey & Miguel Angel Esquivias, 2023. "Impact of Renewable and Non-Renewable Energy on EKC in SAARC Countries: Augmented Mean Group Approach," Energies, MDPI, vol. 16(6), pages 1-19, March.
    18. Husna Purnama & Toto Gunarto & Ida Budiarty, 2020. "Effects of Energy Consumption, Economic Growth and Urbanization on Indonesian Environmental Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 580-587.
    19. Pablo-Romero, María del P. & Pozo-Barajas, Rafael & Sánchez-Braza, Antonio, 2016. "Analyzing the effects of Energy Action Plans on electricity consumption in Covenant of Mayors signatory municipalities in Andalusia," Energy Policy, Elsevier, vol. 99(C), pages 12-26.
    20. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    21. Kemal Eyyüboğlu & Saffet Akdağ & Hakan Yildirim & Andrew Adewale Alola, 2022. "The causal trend of energy intensity and urbanization in emerging countries," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 653-663, December.
    22. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2022. "Understanding the green-growth: which pathways cities undertake in their climate programs," MPRA Paper 114156, University Library of Munich, Germany.
    23. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    24. Charifa Haouraji & Badia Mounir & Ilham Mounir & Abdelmajid Farchi, 2021. "Exploring the Relationship between Residential CO 2 Emissions, Urbanization, Economic Growth, and Residential Energy Consumption: Evidence from the North Africa Region," Energies, MDPI, vol. 14(18), pages 1-19, September.
    25. Ilu, Ahmad Ibraheem, 2019. "Analysis of the nexus between Environmental quality and Economic growth," MPRA Paper 97369, University Library of Munich, Germany, revised 03 Dec 2019.
    26. Maxwell Chukwudi Udeagha & Nicholas Ngepah, 2022. "Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa," Sustainability, MDPI, vol. 14(16), pages 1-35, August.

  12. Phetkeo Poumanyvong & Shinji Kaneko & Shobhakar Dhakal, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," IDEC DP2 Series 2-2, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. Dong Le & Fei Ren & Yiding Tang & Yuke Zhu, 2022. "The Effect of Environmental Policy Uncertainty on Enterprises’ Pollution Emissions: Evidence from Chinese Industrial Enterprise," IJERPH, MDPI, vol. 19(16), pages 1-22, August.
    2. Qiu Chen & Haoran Yang & Wenguo Wang & Tianbiao Liu, 2019. "Beyond the City: Effects of Urbanization on Rural Residential Energy Intensity and CO 2 Emissions," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    3. Wang, Zhaohua & Liu, Wei, 2015. "Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives," Applied Energy, Elsevier, vol. 158(C), pages 292-299.
    4. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    5. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    6. Yue, Shujing & Lu, Rou & Shen, Yongchang & Chen, Hongtao, 2019. "How does financial development affect energy consumption? Evidence from 21 transitional countries," Energy Policy, Elsevier, vol. 130(C), pages 253-262.
    7. Hu, Zongyi & Tang, Liwei, 2013. "Exploring the relation between urbanization and residential CO2 emissions in China: a PTR approach," MPRA Paper 55379, University Library of Munich, Germany.
    8. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    9. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    10. Fang, Jianchun & Gozgor, Giray & Mahalik, Mantu Kumar & Mallick, Hrushikesh & Padhan, Hemachandra, 2022. "Does urbanisation induce renewable energy consumption in emerging economies? The role of education in energy switching policies," Energy Economics, Elsevier, vol. 111(C).
    11. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M. & Sab, Che Normee Binti Che, 2013. "Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 107-112.
    12. Mounir Belloumi & Atef Saad Alshehry, 2016. "The Impact of Urbanization on Energy Intensity in Saudi Arabia," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    13. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    14. Julius Alexander McGee & Christina Ergas & Patrick Trent Greiner & Matthew Thomas Clement, 2017. "How do slums change the relationship between urbanization and the carbon intensity of well-being?," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-12, December.
    15. Du, Zhili & Lin, Boqiang, 2019. "Changes in automobile energy consumption during urbanization: Evidence from 279 cities in China," Energy Policy, Elsevier, vol. 132(C), pages 309-317.
    16. Haibin Xia & Hui Wang & Guangxing Ji, 2019. "Regional Inequality and Influencing Factors of Primary PM Emissions in the Yangtze River Delta, China," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    17. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    18. SBIA, Rashid & Shahbaz, Muhammad & Ozturk, Ilhan, 2016. "Economic Growth, Financial Development, Urbanization and Electricity Consumption Nexus in UAE," MPRA Paper 74790, University Library of Munich, Germany, revised 24 Oct 2016.
    19. Hu, Wei & Fan, Yuemin, 2020. "City size and energy conservation: Do large cities in China consume more energy?," Energy Economics, Elsevier, vol. 92(C).
    20. Hongzhong Fan & Md Ismail Hossain, 2018. "Technological Innovation, Trade Openness, CO2 Emission and Economic Growth: Comparative Analysis between China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 240-257.
    21. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    22. Claudiu URSU & Alina MOROSANU, 2013. "Statistical Evaluation Of Regional Differences Regarding Passenger Cars Fleet Concentration From Romania, In 2007-2012," Romanian Statistical Review, Romanian Statistical Review, vol. 61(10), pages 13-22, November.
    23. Ram Avtar & Saurabh Tripathi & Ashwani Kumar Aggarwal & Pankaj Kumar, 2019. "Population–Urbanization–Energy Nexus: A Review," Resources, MDPI, vol. 8(3), pages 1-21, July.
    24. Lin, Boqiang & Li, Zheng, 2020. "Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model," Energy Policy, Elsevier, vol. 137(C).
    25. Xuyang Li & Tongping Li & Hui Li & Junmei Qi & Linjie Hu, 2019. "Research on the Online Consumption Effect of China’s Urbanization under Population Aging Background," Post-Print hal-03007148, HAL.
    26. Xuyang Li & Tongping Li & Hui Li & Junmei Qi & Linjie Hu, 2019. "Research on the Online Consumption Effect of China’s Urbanization under Population Aging Background," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    27. Anwar, Ahsan & Siddique, Muhammad & Eyup Dogan, & Sharif, Arshian, 2021. "The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from Method of Moments Quantile Regression," Renewable Energy, Elsevier, vol. 164(C), pages 956-967.
    28. Hashemizadeh, Ali & Bui, Quocviet & Kongbuamai, Nattapan, 2021. "Unpacking the role of public debt in renewable energy consumption: New insights from the emerging countries," Energy, Elsevier, vol. 224(C).
    29. Biao Wu & Xinzhu Jin & Dan Li & Baojie Wang, 2023. "Spatial–Temporal Evolution of Coupling Coordination Development between Regional Highway Transportation and New Urbanization: A Case Study of Heilongjiang, China," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    30. Xie, Lunyu & Yan, Haosheng & Zhang, Shuhan & Wei, Chu, 2020. "Does urbanization increase residential energy use? Evidence from the Chinese residential energy consumption survey 2012," China Economic Review, Elsevier, vol. 59(C).
    31. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    32. Lin, Boqiang & Du, Zhili, 2015. "How China׳s urbanization impacts transport energy consumption in the face of income disparity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1693-1701.
    33. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    34. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.
    35. Shahbaz, Muhammad & Loganathan, Nanthakumar & Sbia, Rashid & Afza, Talat, 2015. "The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 683-693.
    36. Li Yue & Dan Xue & Muhammad Umar Draz & Fayyaz Ahmad & Jiaojiao Li & Farrukh Shahzad & Shahid Ali, 2020. "The Double-Edged Sword of Urbanization and Its Nexus with Eco-Efficiency in China," IJERPH, MDPI, vol. 17(2), pages 1-20, January.
    37. Komal, Rabia & Abbas, Faisal, 2015. "Linking financial development, economic growth and energy consumption in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 211-220.
    38. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    39. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    40. Lira P. Sekantsi & Sayed Timuno, 2017. "Electricity Consumption In Botswana: The Role Of Financial Development, Industrialisation And Urbanization," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 19, pages 75-102, June.
    41. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    42. Mingyue Wang & Yu Liu & Yawen Liu & Shunxiang Yang & Lingyu Yang, 2018. "Assessing Multiple Pathways for Achieving China’s National Emissions Reduction Target," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    43. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    44. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    45. Liton Chandra Voumik & Mohammad Iqbal Hossain & Md. Hasanur Rahman & Raziya Sultana & Rahi Dey & Miguel Angel Esquivias, 2023. "Impact of Renewable and Non-Renewable Energy on EKC in SAARC Countries: Augmented Mean Group Approach," Energies, MDPI, vol. 16(6), pages 1-19, March.
    46. Husna Purnama & Toto Gunarto & Ida Budiarty, 2020. "Effects of Energy Consumption, Economic Growth and Urbanization on Indonesian Environmental Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 580-587.
    47. Hussain Ali Bekhet & Nor Salwati Othman & Tahira Yasmin, 2020. "Interaction Between Environmental Kuznet Curve and Urban Environment Transition Hypotheses in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 384-402.
    48. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    49. Sbia, Rashid & Shahbaz, Muhammad, 2013. "The Weight of Economic Growth and Urbanization on Electricity Demand in UAE," MPRA Paper 47981, University Library of Munich, Germany, revised 03 Jul 2013.
    50. Pablo-Romero, María del P. & Pozo-Barajas, Rafael & Sánchez-Braza, Antonio, 2016. "Analyzing the effects of Energy Action Plans on electricity consumption in Covenant of Mayors signatory municipalities in Andalusia," Energy Policy, Elsevier, vol. 99(C), pages 12-26.
    51. Muhammad Usman & Kiran Rasheed & Faiq Mahmood & Ahsan Riaz & Mohsin Bashir, 2023. "Impact of Financial Development and Economic Growth on Energy Consumption in Developing Countries of Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 512-523, May.
    52. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    53. Kemal Eyyüboğlu & Saffet Akdağ & Hakan Yildirim & Andrew Adewale Alola, 2022. "The causal trend of energy intensity and urbanization in emerging countries," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 653-663, December.
    54. Xiaomei Shen & Hong Zheng & Mingdong Jiang & Xinxin Yu & Heyichen Xu & Guanyu Zhong, 2022. "Multidimensional Impact of Urbanization Process on Regional Net CO 2 Emissions: Taking the Yangtze River Economic Belt as an Example," Land, MDPI, vol. 11(7), pages 1-16, July.
    55. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2022. "Understanding the green-growth: which pathways cities undertake in their climate programs," MPRA Paper 114156, University Library of Munich, Germany.
    56. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    57. Sergej Gričar & Nemanja Lojanica & Saša Obradović & Štefan Bojnec, 2023. "Unlocking Sustainable Commuting: Exploring the Nexus of Macroeconomic Factors, Environmental Impact, and Daily Travel Patterns," Energies, MDPI, vol. 16(20), pages 1-27, October.
    58. A. K. Pandey & B. Kalidasan & R. Reji Kumar & Saidur Rahman & V. V. Tyagi & Krismadinata & Zafar Said & P. Abdul Salam & Dranreb Earl Juanico & Jamal Uddin Ahamed & Kamal Sharma & M. Samykano & S. K. , 2022. "Solar Energy Utilization Techniques, Policies, Potentials, Progresses, Challenges and Recommendations in ASEAN Countries," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    59. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.
    60. Charifa Haouraji & Badia Mounir & Ilham Mounir & Abdelmajid Farchi, 2021. "Exploring the Relationship between Residential CO 2 Emissions, Urbanization, Economic Growth, and Residential Energy Consumption: Evidence from the North Africa Region," Energies, MDPI, vol. 14(18), pages 1-19, September.
    61. Jeyhun Mikayilov & Vusal Shukurov & Shahriyar Mukhtarov & Sabuhi Yusifov, 2017. "Does Urbanization Boost Pollution from Transport?," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(5), pages 1709-1718.
    62. Long, X. & Ji, Xi & Ulgiati, S., 2017. "Is urbanization eco-friendly? An energy and land use cross-country analysis," Energy Policy, Elsevier, vol. 100(C), pages 387-396.
    63. Ilu, Ahmad Ibraheem, 2019. "Analysis of the nexus between Environmental quality and Economic growth," MPRA Paper 97369, University Library of Munich, Germany, revised 03 Dec 2019.
    64. Paul-Razvan Șerban & Monica Dumitrașcu & Bianca Mitrică & Ines Grigorescu & Irena Mocanu & Gheorghe Kucsicsa & Alexandra Vrînceanu & Cristina Dumitrică, 2020. "The Estimation of Regional Energy Consumption Based on the Energy Consumption Rate at National Level. Case Study: The Romanian Danube Valley," Energies, MDPI, vol. 13(16), pages 1-18, August.
    65. Maxwell Chukwudi Udeagha & Nicholas Ngepah, 2022. "Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa," Sustainability, MDPI, vol. 14(16), pages 1-35, August.
    66. Rehermann, F. & Pablo-Romero, M., 2018. "Economic growth and transport energy consumption in the Latin American and Caribbean countries," Energy Policy, Elsevier, vol. 122(C), pages 518-527.
    67. Ji Zheng & Yingjie Hu & Suocheng Dong & Yu Li, 2019. "The Spatiotemporal Pattern of Decoupling Transport CO 2 Emissions from Economic Growth across 30 Provinces in China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.

  13. Kimitaka Nishitani & Shinji Kaneko & Satoru Komatsu & Hidemichi Fujii, 2011. "Firm's reduction of greenhouse gas emissions and economic performance: analyzing effects through demand and productivity," IDEC DP2 Series 1-1, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

    Cited by:

    1. Sinwoo Lee & Dong-Woon Noh & Dong-hyun Oh, 2018. "Characterizing the Difference between Indirect and Direct CO 2 Emissions: Evidence from Korean Manufacturing Industries, 2004–2010," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    2. Kimitaka Nishitani & Katsuhiko Kokubu, 2014. "Corporate Environmental Initiatives and Shareholder Value: Focusing on the Role of Environmental Information and Its Credibility," Discussion Paper Series DP2014-34, Research Institute for Economics & Business Administration, Kobe University.
    3. Kimitaka Nishitani & Munehiko Itoh, 2014. "Product Innovation in Response to Environmental Standards and Competitive Advantage: A Hedonic Analysis of Refrigerators in the Japanese Retail Market," Discussion Paper Series DP2014-30, Research Institute for Economics & Business Administration, Kobe University.

  14. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2009. "Changes in Environmentally Sensitive Productivity and Technological Modernization in China’s Iron and Steel Industry in the 1990s," MPRA Paper 92754, University Library of Munich, Germany.

    Cited by:

    1. Athukorala, Wasantha & Lee, Boon L. & Wilson, Clevo & Fujii, Hidemichi & Managi, Shunsuke, 2023. "Measuring the impact of pesticide exposure on farmers’ health and farm productivity," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 851-862.
    2. Boon Liat Lee & Clevo Wilson & Carl A. Pasurka & Hidemichi Fujii & Shunsuke Managi, 2017. "Sources of airline productivity from carbon emissions: an analysis of operational performance under good and bad outputs," Journal of Productivity Analysis, Springer, vol. 47(3), pages 223-246, June.
    3. Peihao Lai & Minzhe Du & Bing Wang & Ziyue Chen, 2016. "Assessment and Decomposition of Total Factor Energy Efficiency: An Evidence Based on Energy Shadow Price in China," Sustainability, MDPI, vol. 8(5), pages 1-23, April.
    4. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors," MPRA Paper 64703, University Library of Munich, Germany.
    5. Fujii, Hidemichi & Cao, Jing & Managi, Shunsuke, 2014. "Decomposition of productivity considering multi-environmental pollutants in Chinese industrial sector," MPRA Paper 57997, University Library of Munich, Germany.
    6. Huijuan Cao & Hidemichi Fujii & Shunsuke Managi, 2015. "A productivity analysis considering environmental pollution and diseases in China," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-19, December.
    7. Chen, Shiyi & Golley, Jane, 2014. "‘Green’ productivity growth in China's industrial economy," Energy Economics, Elsevier, vol. 44(C), pages 89-98.
    8. Fujii, Hidemichi & Cao, Jing & Managi, Shunsuke, 2016. "Firm-level environmentally sensitive productivity and innovation in China," MPRA Paper 71851, University Library of Munich, Germany.
    9. Hidemichi Fujii & Kazuyuki Iwata & Shinji Kaneko & Shunsuke Managi, 2013. "Corporate Environmental and Economic Performance of Japanese Manufacturing Firms: Empirical Study for Sustainable Development," Business Strategy and the Environment, Wiley Blackwell, vol. 22(3), pages 187-201, March.
    10. Nick Johnstone & Shunsuke Managi & Miguel Cárdenas Rodríguez & Ivan Haščič & Hidemichi Fujii & Martin Souchier, 2016. "Environmental Policy Design, Innovation And Efficiency Gains In Electricity Generation," OECD Environment Working Papers 104, OECD Publishing.
    11. Shao, Yanmin & Shang, Yan, 2016. "Decisions of OFDI Engagement and Location for Heterogeneous Multinational firms: Evidence from Chinese firms," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 178-187.
    12. Clarence Tolliver & Hidemichi Fujii & Alexander Ryota Keeley & Shunsuke Managi, 2021. "Green Innovation and Finance in Asia," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 67-87, January.
    13. Kounetas, Kostas & Alexopoulos, Elias & Tzelepis, Dimitris, 2016. "Environmental and Financial Performance. Is there a win-win or a win-loss situation? Evidence from the Greek manufacturing," MPRA Paper 80906, University Library of Munich, Germany, revised 19 Jul 2017.
    14. Fujii, Hidemichi & Assaf, A. George & Managi, Shunsuke & Matousek, Roman, 2015. "Did the Financial Crisis Affect Environmental Efficiency? Evidence from the Japanese Manufacturing Sector," MPRA Paper 66363, University Library of Munich, Germany.
    15. Carlos Barros & Hidemichi Fujii & Shunsuke Managi, 2015. "How scale and ownership are related to financial performance? A productivity analysis of the Chinese banking sector," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-14, December.
    16. Haider, Salman & Mishra, Prajna Paramita, 2021. "Does innovative capability enhance the energy efficiency of Indian Iron and Steel firms? A Bayesian stochastic frontier analysis," Energy Economics, Elsevier, vol. 95(C).
    17. Fujii, Hidemichi & Managi, Shunsuke, 2012. "Productive inefficiency analysis and toxic chemical substances in US and Japanese manufacturing sectors," MPRA Paper 92655, University Library of Munich, Germany.
    18. Takayabu, Hirotaka, 2020. "CO2 mitigation potentials in manufacturing sectors of 26 countries," Energy Economics, Elsevier, vol. 86(C).

Articles

  1. Mohammad Jahangir Alam & Shinji Kaneko, 2019. "The Effects of Electrification on School Enrollment in Bangladesh: Short- and Long-Run Perspectives," Energies, MDPI, vol. 12(4), pages 1-26, February.

    Cited by:

    1. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.
    2. Richard S. J. Tol, 2023. "Navigating the energy trilemma during geopolitical and environmental crises," Papers 2301.07671, arXiv.org.

  2. Ha, Hun Koo & Kaneko, Shinji & Yamamoto, Masashi & Yoshida, Yuichiro & Zhang, Anming, 2017. "On the discrepancy in the social efficiency measures between parametric and non-parametric production technology identification," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 9-14.

    Cited by:

    1. Matthias Klumpp, 2018. "How to Achieve Supply Chain Sustainability Efficiently? Taming the Triple Bottom Line Split Business Cycle," Sustainability, MDPI, vol. 10(2), pages 1-23, February.

  3. Tanaka, Kenta & Sekito, Mai & Managi, Shunsuke & Kaneko, Shinji & Rai, Varun, 2017. "Decision-making governance for purchases of solar photovoltaic systems in Japan," Energy Policy, Elsevier, vol. 111(C), pages 75-84.

    Cited by:

    1. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    2. Wang, Xiaozhen & Zheng, Ying & Jiang, Zihao & Tao, Ziyang, 2021. "Influence mechanism of subsidy policy on household photovoltaic purchase intention under an urban-rural divide in China," Energy, Elsevier, vol. 220(C).
    3. Setyawati, Dinita, 2020. "Analysis of perceptions towards the rooftop photovoltaic solar system policy in Indonesia," Energy Policy, Elsevier, vol. 144(C).
    4. Chu, Ling & Takeuchi, Kenji, 2022. "The non-operating solar projects: Examining the impact of the feed-in tariff amendment in Japan," Energy Policy, Elsevier, vol. 160(C).
    5. Kenta Tanaka & Kazuyuki Iwata & Shunsuke Managi, 2021. "MPG Illusion and Vehicle Choice: An Empirical Study of the Japanese Household Survey," Energies, MDPI, vol. 14(21), pages 1-13, November.
    6. Best, Rohan & Trück, Stefan, 2020. "Capital and policy impacts on Australian small-scale solar installations," Energy Policy, Elsevier, vol. 136(C).
    7. Sommerfeldt, Nelson & Lemoine, Ida & Madani, Hatef, 2022. "Hide and seek: The supply and demand of information for household solar photovoltaic investment," Energy Policy, Elsevier, vol. 161(C).
    8. Li, Yanxue & Gao, Weijun & Ruan, Yingjun & Ushifusa, Yoshiaki, 2018. "The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan," Energy, Elsevier, vol. 164(C), pages 811-821.
    9. Timothy N. Cason & John K. Stranlund & Frans P. de Vries, 2022. "Investment Incentives in Tradable Emissions Markets with Price Floors Approach," Purdue University Economics Working Papers 1331, Purdue University, Department of Economics.
    10. Garlet, Taís Bisognin & Ribeiro, José Luis Duarte & de Souza Savian, Fernando & Mairesse Siluk, Julio Cezar, 2019. "Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 157-169.
    11. Massimo Filippini & Lin Zhang, 2019. "Impacts of heat metering and efficiency retrofit policy on residential energy consumption in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 203-216, April.
    12. Rosa, Carmen B. & Wendt, João Francisco M. & Chaves, Daniel M.S. & Thomasi, Virginia & Michels, Leandro & Siluk, Julio Cezar M., 2020. "Mathematical modeling for the measurement of the competitiveness index of Brazil south urban sectors for installation of photovoltaic systems," Energy Policy, Elsevier, vol. 136(C).
    13. Kenta Tanaka & Clevo Wilson & Shunsuke Managi, 2022. "Impact of feed-in tariffs on electricity consumption," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(1), pages 49-72, January.
    14. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.

  4. Ram P. Dhital & Yutaka Ito & Shinji Kaneko & Satoru Komatsu & Ryota Mihara & Yuichiro Yoshida, 2016. "Does Institutional Failure Undermine the Physical Design Performance of Solar Water Pumping Systems in Rural Nepal?," Sustainability, MDPI, vol. 8(8), pages 1-11, August.

    Cited by:

    1. Bhattarai, Utsav & Maraseni, Tek & Apan, Armando & Devkota, Laxmi Prasad, 2023. "Rationalizing donations and subsidies: Energy ecosystem development for sustainable renewable energy transition in Nepal," Energy Policy, Elsevier, vol. 177(C).
    2. Satoru Komatsu & Yuki Yamamoto & Yutaka Ito & Shinji Kaneko & Ram Prasad Dhital, 2020. "Water for life: ceaseless routine efforts for collecting drinking water in remote mountainous villages of Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7909-7925, December.

  5. Chikaraishi, Makoto & Fujiwara, Akimasa & Kaneko, Shinji & Poumanyvong, Phetkeo & Komatsu, Satoru & Kalugin, Andrey, 2015. "The moderating effects of urbanization on carbon dioxide emissions: A latent class modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 302-317.

    Cited by:

    1. Bosede Ngozi Adeleye & Darlington Akam & Nasiru Inuwa & Muftau Olarinde & Victoria Okafor & Ifeoluwa Ogunrinola & Paul Adekola, 2021. "Investigating Growth-Energy-Emissions Trilemma in South Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 112-120.
    2. Dyah Maya Nihayah & Izza Mafruhah & Lukman Hakim & Suryanto Suryanto, 2022. "CO 2 Emissions in Indonesia: The Role of Urbanization and Economic Activities towards Net Zero Carbon," Economies, MDPI, vol. 10(4), pages 1-20, March.
    3. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    4. Tan Yigitcanlar & Md. Kamruzzaman, 2015. "Planning, Development and Management of Sustainable Cities: A Commentary from the Guest Editors," Sustainability, MDPI, vol. 7(11), pages 1-12, November.
    5. Zheng, Yanting & Yang, Huidan & Huang, Jinyuan & Cui, Qi & Zhan, Jinyan, 2022. "Industrial agglomeration measured by plants’ distance and CO2 emissions: Evidence from 268 Chinese prefecture-level cities," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    6. Yanwen Sheng & Yi Miao & Jinping Song & Hongyan Shen, 2019. "The Moderating Effect of Innovation on the Relationship between Urbanization and CO 2 Emissions: Evidence from Three Major Urban Agglomerations in China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    7. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    8. Yang Ding & Qing Yang & Lanjuan Cao, 2021. "Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions," Energies, MDPI, vol. 14(21), pages 1-23, November.
    9. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    10. David O. Baloye. & Lobina G. Palamuleni, 2015. "A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria," IJERPH, MDPI, vol. 12(10), pages 1-22, September.
    11. Yixi Xue & Jie Ren & Xiaohang Bi, 2019. "Impact of Influencing Factors on CO 2 Emissions in the Yangtze River Delta during Urbanization," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    12. Li Qian & Mengyuan Shen & Huimin Yi, 2022. "Spatio-Temporal Pattern of Coupling Coordination between Urban Development and Ecological Environment under the “Double Carbon” Goal: A Case Study in Anhui, China," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    13. Li Li & Xuefei Hong & Dengli Tang & Ming Na, 2016. "GHG Emissions, Economic Growth and Urbanization: A Spatial Approach," Sustainability, MDPI, vol. 8(5), pages 1-16, May.
    14. Daniel Balsalobre-Lorente & Nuno Carlos Leitão & Festus Victor Bekun, 2021. "Fresh Validation of the Low Carbon Development Hypothesis under the EKC Scheme in Portugal, Italy, Greece and Spain," Energies, MDPI, vol. 14(1), pages 1-17, January.
    15. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Charfeddine, Lanouar & Mrabet, Zouhair, 2017. "The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 138-154.
    17. Long Qian & Xiaolin Xu & Yunjie Zhou & Ying Sun & Duoliang Ma, 2023. "Carbon Emission Reduction Effects of the Smart City Pilot Policy in China," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    18. Charfeddine, Lanouar, 2017. "The impact of energy consumption and economic development on Ecological Footprint and CO2 emissions: Evidence from a Markov Switching Equilibrium Correction Model," Energy Economics, Elsevier, vol. 65(C), pages 355-374.
    19. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    20. Li Yue & Dan Xue & Muhammad Umar Draz & Fayyaz Ahmad & Jiaojiao Li & Farrukh Shahzad & Shahid Ali, 2020. "The Double-Edged Sword of Urbanization and Its Nexus with Eco-Efficiency in China," IJERPH, MDPI, vol. 17(2), pages 1-20, January.
    21. Olufemi Adewale Aluko & Muazu Ibrahim & Xuan Vinh Vo, 2022. "Toward achieving sustainable development: Searching for economic development and globalization thresholds in the foreign direct investment‐environmental degradation nexus," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 678-692, August.
    22. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    23. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    24. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    25. Haug, Alfred A. & Ucal, Meltem, 2019. "The role of trade and FDI for CO2 emissions in Turkey: Nonlinear relationships," Energy Economics, Elsevier, vol. 81(C), pages 297-307.
    26. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    27. Wang, Yanan & Li, Xinbei & Kang, Yanqing & Chen, Wei & Zhao, Minjuan & Li, Wei, 2019. "Analyzing the impact of urbanization quality on CO2 emissions: What can geographically weighted regression tell us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 127-136.
    28. Wang, Zhaohua & Danish, & Zhang, Bin & Wang, Bo, 2018. "The moderating role of corruption between economic growth and CO2 emissions: Evidence from BRICS economies," Energy, Elsevier, vol. 148(C), pages 506-513.
    29. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    30. Li Li & Jianjun Wang, 2015. "The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO 2 Mitigation Goals in China," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    31. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2019. "How does the new-type urbanisation affect CO2 emissions in China? An empirical analysis from the perspective of technological progress," Energy Economics, Elsevier, vol. 80(C), pages 917-927.

  6. Nguyen, Thanh Cong & Robinson, Jackie & Whitty, Jennifer A. & Kaneko, Shinji & Nguyen, The Chinh, 2015. "Attribute non-attendance in discrete choice experiments: A case study in a developing country," Economic Analysis and Policy, Elsevier, vol. 47(C), pages 22-33.

    Cited by:

    1. Arora, Nikita & Quaife, Matthew & Hanson, Kara & Lagarde, Mylène & Woldesenbet, Dorka & Seifu, Abiy & Crastes dit Sourd, Romain, 2022. "Discrete choice analysis of health worker job preferences in Ethiopia: separating attribute non-attendance from taste heterogeneity," LSE Research Online Documents on Economics 113529, London School of Economics and Political Science, LSE Library.
    2. DeLong, Karen L. & Syrengelas, Konstantinos G. & Grebitus, Carola & Nayga, Rodolfo M., 2021. "Visual versus Text Attribute Representation in Choice Experiments," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    3. Simon Gwara & Edilegnaw Wale & Alfred Odindo & Chris Buckley, 2020. "Why do We Know So Much and Yet So Little? A Scoping Review of Willingness to Pay for Human Excreta Derived Material in Agriculture," Sustainability, MDPI, vol. 12(16), pages 1-25, August.
    4. Gonçalves, Tânia & Pinto, Lígia M. Costa & Lourenço-Gomes, Lina, 2020. "Attribute non-attendance in wine choice: Contrasts between stated and inferred approaches," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 262-275.
    5. Kassie, Girma T. & Zeleke, Fresenbet & Birhanu, Mulugeta Y. & Scarpa, Riccardo, 2020. "Reminder Nudge, Attribute Nonattendance, and Willingness to Pay in a Discrete Choice Experiment," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304208, Agricultural and Applied Economics Association.
    6. Nikita Arora & Matthew Quaife & Kara Hanson & Mylene Lagarde & Dorka Woldesenbet & Abiy Seifu & Romain Crastes dit Sourd, 2022. "Discrete choice analysis of health worker job preferences in Ethiopia: Separating attribute non‐attendance from taste heterogeneity," Health Economics, John Wiley & Sons, Ltd., vol. 31(5), pages 806-819, May.
    7. Balaine, Lorraine & Gallai, Nicola & Del Corso, Jean-Pierre & Kephaliacos, Charilaos, 2020. "Trading off environmental goods for compensations: Insights from traditional and deliberative valuation methods in the Ecuadorian Amazon," Ecosystem Services, Elsevier, vol. 43(C).
    8. Naghmeh Niroomand & Glenn P. Jenkins, 2016. "A Comparison of Stated Preference Methods for the Valuation of Improvement in Road Safety," Development Discussion Papers 2016-10, JDI Executive Programs.
    9. Baert, Midas & Kervyn, Matthieu & Kagou, Armand Dongmo & Guedjeo, Christian Suh & Vranken, Liesbet & Mertens, Kewan, 2020. "Resettlement preferences from landslide prone areas in Cameroon: Willingness to move, reasons to stay," Land Use Policy, Elsevier, vol. 95(C).
    10. Soza-Parra, Jaime & Raveau, Sebastián & Muñoz, Juan Carlos & Cats, Oded, 2019. "The underlying effect of public transport reliability on users’ satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 83-93.
    11. Grammatikopoulou, Ioanna & Pouta, Eija & Artell, Janne, 2019. "Heterogeneity and attribute non-attendance in preferences for peatland conservation," Forest Policy and Economics, Elsevier, vol. 104(C), pages 45-55.
    12. John C. Whitehead & Pamela Wicker, 2019. "Examining return visitation and the monetary value of participatory sport events: The role of attribute non-attendance," Working Papers 19-13, Department of Economics, Appalachian State University.

  7. Erik Armundito & Shinji Kaneko, 2015. "Baseline analysis of productivity changes with and without considering carbon dioxide emissions in the major manufacturing sector of Indonesia," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.

    Cited by:

    1. Shunsuke Managi & George Halkos, 2015. "Production analysis in environmental, resource, and infrastructure evaluation," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-4, December.

  8. Thang Cong Nguyen & Jackie Robinson & Shinji Kaneko & The Chinh Nguyen, 2015. "Examining ordering effects in discrete choice experiments: A case study in Vietnam," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 39-57.

    Cited by:

    1. Yu, Lili & Niu, Ziheng & Gao, Yang & Tian, Borui, 2019. "Support policy preferences of grain family farms: evidence from Huang-huai-hai plain of China," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 23(5), October.
    2. Nguyen, Thanh Cong & Robinson, Jackie & Whitty, Jennifer A. & Kaneko, Shinji & Nguyen, The Chinh, 2015. "Attribute non-attendance in discrete choice experiments: A case study in a developing country," Economic Analysis and Policy, Elsevier, vol. 47(C), pages 22-33.
    3. Chen, Gang & Ratcliffe, Julie & Milte, Rachel & Khadka, Jyoti & Kaambwa, Billingsley, 2021. "Quality of care experience in aged care: An Australia-Wide discrete choice experiment to elicit preference weights," Social Science & Medicine, Elsevier, vol. 289(C).
    4. Naghmeh Niroomand & Glenn P. Jenkins, 2016. "A Comparison of Stated Preference Methods for the Valuation of Improvement in Road Safety," Development Discussion Papers 2016-10, JDI Executive Programs.
    5. Lopez-Becerra, E.I. & Alcon, F., 2021. "Social desirability bias in the environmental economic valuation: An inferred valuation approach," Ecological Economics, Elsevier, vol. 184(C).

  9. Kimitaka Nishitani & Shinji Kaneko & Satoru Komatsu & Hidemichi Fujii, 2014. "How does a firm’s management of greenhouse gas emissions influence its economic performance? Analyzing effects through demand and productivity in Japanese manufacturing firms," Journal of Productivity Analysis, Springer, vol. 42(3), pages 355-366, December.

    Cited by:

    1. Kazumi Endo, 2019. "Does the stock market value corporate environmental performance? Some perils of static regression models," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(6), pages 1530-1538, November.
    2. Younes Ben Zaied & Béchir Ben Lahouel, 2021. "Does environmental CSR performance matter for corporate financial performance? Evidence from panel quantile regression," Economics Bulletin, AccessEcon, vol. 41(3), pages 938-951.
    3. Philipp Steinbrunner, 2023. "I want a quiet life! On productivity and competition in the Central European energy sector," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 31(2), pages 403-428, April.
    4. Kimitaka Nishitani & Katsuhiko Kokubu & Takehisa Kajiwara, 2016. "Does low-carbon supply chain management reduce greenhouse gas emissions more effectively than existing environmental initiatives? An empirical analysis of Japanese manufacturing firms," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 27(1), pages 33-60, February.
    5. Yagi, Michiyuki & Managi, Shunsuke, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," MPRA Paper 87891, University Library of Munich, Germany.
    6. G Capece & F Di Pillo & M Gastaldi & N Levialdi & M Miliacca, 2017. "Examining the effect of managing GHG emissions on business performance," Business Strategy and the Environment, Wiley Blackwell, vol. 26(8), pages 1041-1060, December.
    7. Sinwoo Lee & Dong-Woon Noh & Dong-hyun Oh, 2018. "Characterizing the Difference between Indirect and Direct CO 2 Emissions: Evidence from Korean Manufacturing Industries, 2004–2010," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    8. Kimitaka Nishitani & Katsuhiko Kokubu, 2014. "Corporate Environmental Initiatives and Shareholder Value: Focusing on the Role of Environmental Information and Its Credibility," Discussion Paper Series DP2014-34, Research Institute for Economics & Business Administration, Kobe University.
    9. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Trends in corporate environmental management studies and databases," MPRA Paper 66531, University Library of Munich, Germany.
    10. Erli Dan & Jianfei Shen & Xinyuan Zheng & Peng Liu & Ludan Zhang & Feiyu Chen, 2023. "Asset Structure, Asset Utilization Efficiency, and Carbon Emission Performance: Evidence from Panel Data of China’s Low-Carbon Industry," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    11. Kimitaka Nishitani & Munehiko Itoh, 2014. "Product Innovation in Response to Environmental Standards and Competitive Advantage: A Hedonic Analysis of Refrigerators in the Japanese Retail Market," Discussion Paper Series DP2014-30, Research Institute for Economics & Business Administration, Kobe University.
    12. Philipp R. Steinbrunner, 2023. "May It Be a Little Bit More of Market Power? On Productivity Growth and Competition," Journal of Industry, Competition and Trade, Springer, vol. 23(3), pages 123-170, December.
    13. Idris Oyewale Oyelakin & Satirenjit Kaur Johl, 2022. "Does ISO 14001 and Green Servitization Provide a Push Factor for Sustainable Performance? A Study of Manufacturing Firms," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    14. Philipp R. Steinbrunner, 2022. "Boon or bane? On productivity and environmental regulation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 365-396, July.

  10. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.

    Cited by:

    1. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    2. Michelsen, Carl Christian & Madlener, Reinhard, 2015. "Beyond Technology Adoption: Homeowner Satisfaction with Newly Adopted Residential Heating Systems," FCN Working Papers 1/2015, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Alam, Majbaul & Bhattacharyya, Subhes, 2017. "Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh," Energy, Elsevier, vol. 139(C), pages 433-446.
    4. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    5. Binh Nguyen, Duong & Nong, Duy & Simshauser, Paul & Nguyen-Huy, Thong, 2022. "General equilibrium impact evaluation of food top-up induced by households’ renewable power self-supply in 141 regions," Applied Energy, Elsevier, vol. 306(PB).
    6. Xavier Lemaire, 2018. "Solar home systems and solar lanterns in rural areas of the Global South: What impact?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    7. Chowdhury, Shahriar Ahmed & Mourshed, Monjur, 2016. "Off-grid electrification with solar home systems: An appraisal of the quality of components," Renewable Energy, Elsevier, vol. 97(C), pages 585-598.
    8. Miguel H. Fernandez-Fuentes & Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera, 2021. "Characterization of Technological Innovations in Photovoltaic Rural Electrification, Based on the Experiences of Bolivia, Peru, and Argentina: Third Generation Solar Home Systems," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    9. Nathanael Ojong, 2021. "Solar Home Systems in South Asia: Examining Adoption, Energy Consumption, and Social Practices," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    10. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    11. Lin, Boqiang & Kaewkhunok, Suppawit, 2021. "The role of socio-Culture in the solar power adoption: The inability to reach government policies of marginalized groups," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Liu, Yuan & Chen, Jiahui & Zhao, Lutao & Liao, Hua, 2023. "Rural photovoltaic projects substantially prompt household energy transition: Evidence from China," Energy, Elsevier, vol. 275(C).
    13. Mohammad Jahangir Alam & Shinji Kaneko, 2019. "The Effects of Electrification on School Enrollment in Bangladesh: Short- and Long-Run Perspectives," Energies, MDPI, vol. 12(4), pages 1-26, February.
    14. Khan, Imran, 2020. "Impacts of energy decentralization viewed through the lens of the energy cultures framework: Solar home systems in the developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Abbas Al-Refaie & Natalija Lepkova & Constantinos Hadjistassou, 2023. "Using System Dynamics to Examine Effects of Satisfaction with PV Systems, Advertising, and Competition on Energy Security and CO 2 Emissions in Jordan," Sustainability, MDPI, vol. 15(20), pages 1-25, October.

  11. Taro Ohdoko & Satoru Komatsu & Shinji Kaneko, 2013. "Residential preferences for stable electricity supply and a reduction in air pollution risk: a benefit transfer study using choice modeling in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(3), pages 309-328, July.
    See citations under working paper version above.
  12. Nguyen, Thanh Cong & Robinson, Jackie & Kaneko, Shinji & Komatsu, Satoru, 2013. "Estimating the value of economic benefits associated with adaptation to climate change in a developing country: A case study of improvements in tropical cyclone warning services," Ecological Economics, Elsevier, vol. 86(C), pages 117-128.

    Cited by:

    1. Nguyen, Thanh Cong & Robinson, Jackie & Whitty, Jennifer A. & Kaneko, Shinji & Nguyen, The Chinh, 2015. "Attribute non-attendance in discrete choice experiments: A case study in a developing country," Economic Analysis and Policy, Elsevier, vol. 47(C), pages 22-33.
    2. Khanal, Uttam & Wilson, Clevo & Lee, Boon & Managi, Shunsuke, 2017. "Influence of payment modes on farmers’ contribution to climate change adaptation: understanding differences using a choice experiment in Nepal," MPRA Paper 107430, University Library of Munich, Germany.
    3. Nguyen, Thanh Cong & Le, Hoa Thu & Nguyen, Hang Dieu & Ngo, Mai Thanh & Nguyen, Hong Quang, 2021. "Examining ordering effects and strategic behaviour in a discrete choice experiment," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 394-413.
    4. Adam Pártl & David Vačkář & Blanka Loučková & Eliška Krkoška Lorencová, 2017. "A spatial analysis of integrated risk: vulnerability of ecosystem services provisioning to different hazards in the Czech Republic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1185-1204, December.
    5. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    6. Nguyen, Thanh Cong & Le, Hoa Thu & Nguyen, Hang Dieu & Le, Thanh Ha & Nguyen, Hong Quang, 2021. "Estimating economic benefits associated with air quality improvements in Hanoi City: An application of a choice experiment," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 420-433.
    7. Ryffel, Andrea Nathalie & Rid, Wolfgang & Grêt-Regamey, Adrienne, 2014. "Land use trade-offs for flood protection: A choice experiment with visualizations," Ecosystem Services, Elsevier, vol. 10(C), pages 111-123.
    8. Hye-Min Kim & In-Gyum Kim & Byunghwan Lim & Seung-Hoon Yoo, 2021. "Estimating the Economic Value of Improving the Asian Dust Aerosol Model in the Korean Household Sector: A Choice Experiment," Sustainability, MDPI, vol. 13(21), pages 1-11, November.

  13. Hosseini, Hossein Mirshojaeian & Kaneko, Shinji, 2013. "Can environmental quality spread through institutions?," Energy Policy, Elsevier, vol. 56(C), pages 312-321.

    Cited by:

    1. Xianhua Wu & Yufeng Chen & Ji Guo & Ge Gao, 2018. "Inputs optimization to reduce the undesirable outputs by environmental hazards: a DEA model with data of PM2.5 in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 1-25, January.
    2. Suvrat Dhanorkar & Suresh Muthulingam, 2020. "Do E‐Waste Laws Create Behavioral Spillovers? Quasi‐Experimental Evidence from California," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1738-1766, July.
    3. Yuping Deng & Yanrui Wu & Helian Xu, 2020. "Political Connections and Firm Pollution Behaviour: An Empirical Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 867-898, April.
    4. Galinato, Gregmar I. & Chouinard, Hayley H., 2018. "Strategic interaction and institutional quality determinants of environmental regulations," Resource and Energy Economics, Elsevier, vol. 53(C), pages 114-132.
    5. Khalid, Usman & Shafiullah, Muhammad, 2020. "Financial Development and Governance: A Panel Data Analysis Incorporating Cross-sectional Dependence," MPRA Paper 100880, University Library of Munich, Germany.
    6. Yunpeng Sun & Asif Razzaq, 2022. "Composite fiscal decentralisation and green innovation: Imperative strategy for institutional reforms and sustainable development in OECD countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 944-957, October.
    7. Fredrick Oteng Agyeman & Ma Zhiqiang & Mingxing Li & Agyemang Kwasi Sampene & Malcom Frimpong Dapaah & Emmanuel Adu Gyamfi Kedjanyi & Paul Buabeng & Yiyao Li & Saifullah Hakro & Mohammad Heydari, 2022. "Probing the Effect of Governance of Tourism Development, Economic Growth, and Foreign Direct Investment on Carbon Dioxide Emissions in Africa: The African Experience," Energies, MDPI, vol. 15(13), pages 1-24, June.
    8. Dervis Kirikkaleli & Aygün Osmanlı, 2023. "The Impact of Political Stability on Environmental Quality in the Long Run: The Case of Turkey," Sustainability, MDPI, vol. 15(11), pages 1-15, June.
    9. Danish & Recep Ulucak, 2020. "The pathway toward pollution mitigation: Does institutional quality make a difference?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3571-3583, December.
    10. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    11. Xianhua Wu & Yufeng Chen & Ji Guo & Guizhi Wang & Yeming Gong, 2017. "Spatial concentration, impact factors and prevention-control measures of PM2.5 pollution in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 393-410, March.
    12. Sofien Tiba & Mohamed Frikha, 2020. "Sustainability Challenge in the Agenda of African Countries: Evidence from Simultaneous Equations Models," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1270-1294, September.
    13. Tiba, Sofien & Frikha, Mohamed, 2019. "The controversy of the resource curse and the environment in the SDGs background: The African context," Resources Policy, Elsevier, vol. 62(C), pages 437-452.
    14. Umut Uzar, 2022. "The connection between freedom of the press and environmental quality: An investigation on emerging market countries," Natural Resources Forum, Blackwell Publishing, vol. 46(1), pages 21-38, February.
    15. Zhang, Jie & Zhang, Ke & Zhao, Feng, 2020. "Research on the regional spatial effects of green development and environmental governance in China based on a spatial autocorrelation model," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 1-11.
    16. Lv, Zhike & Gao, Zhenya, 2021. "The effect of corruption on environmental performance: Does spatial dependence play a role?," Economic Systems, Elsevier, vol. 45(2).
    17. Donatella Baiardi & Simona Scabrosetti, 2020. "Does the quality of political institutions matter for the effectiveness of environmental taxes? An empirical analysis on CO2 emissions," Working Paper series 20-25, Rimini Centre for Economic Analysis.
    18. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    19. Bai, Hanyu & Irfan, Muhammad & Hao, Yu, 2022. "How does industrial transfer affect environmental quality? Evidence from China," Journal of Asian Economics, Elsevier, vol. 82(C).
    20. Chagas, André L.S. & Azzoni, Carlos R. & Almeida, Alexandre N., 2016. "A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases," Regional Science and Urban Economics, Elsevier, vol. 59(C), pages 24-36.
    21. Hecker, Lutz Philip & Wätzold, Frank & Markwardt, Gunther, 2020. "Spotlight on Spatial Spillovers: An Econometric Analysis of Wastewater Treatment in Mexican Municipalities," Ecological Economics, Elsevier, vol. 175(C).
    22. José M. Cansino & Rocio Román-Collado & Juan C. Molina, 2019. "Quality of Institutions, Technological Progress, and Pollution Havens in Latin America. An Analysis of the Environmental Kuznets Curve Hypothesis," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    23. Bo Sui & Chun-Ping Chang & Yin Chu, 2021. "Political Stability: an Impetus for Spatial Environmental Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 387-415, June.
    24. Konstantinos Bletsas & Georgios Oikonomou & Minas Panagiotidis & Eleftherios Spyromitros, 2022. "Carbon Dioxide and Greenhouse Gas Emissions: The Role of Monetary Policy, Fiscal Policy, and Institutional Quality," Energies, MDPI, vol. 15(13), pages 1-24, June.
    25. Beidi Diao & Lei Ding & Panda Su & Jinhua Cheng, 2018. "The Spatial-Temporal Characteristics and Influential Factors of NOx Emissions in China: A Spatial Econometric Analysis," IJERPH, MDPI, vol. 15(7), pages 1-19, July.
    26. Donatella Baiardi & Simona Scabrosetti, 2020. "Does the quality of political institutions matter for the effectiveness of environmental taxes? An empirical analysis on CO2 emissions," Working papers 92, Società Italiana di Economia Pubblica.
    27. Canh Phuc Nguyen & Nhi Ai Nguyen & Christophe Schinckus & Thanh Dinh Su, 2018. "The Ambivalent Role of Institutions in the CO2 Emissions: The Case of Emerging Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 7-17.
    28. Danish, & Baloch, Muhammad Awais & Wang, Bo, 2019. "Analyzing the role of governance in CO2 emissions mitigation: The BRICS experience," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 119-125.
    29. Alexandra-Anca Purcel, 2019. "Does Political Stability Hinder Pollution? Evidence From Developing States," Economic Research Guardian, Weissberg Publishing, vol. 9(2), pages 75-98, December.
    30. Lutz Philip Hecker & Frank Wätzold & Gunther Markwardt, 2018. "Spotlight on Spatial Environmental Policy Spillovers: An Econometric Analysis of Wastewater Treatment in Mexican Municipalities," CESifo Working Paper Series 7251, CESifo.
    31. Oluc, Ihsan & Ben Jebli, Mehdi & Can, Muhlis & Guzel, Ihsan & Brusselaers, Jan, 2022. "The Productive Capacity And Environment: Evidence From OECD Countries," MPRA Paper 112590, University Library of Munich, Germany.
    32. Chaikumbung, Mayula & Doucouliagos, Chris & Scarborough, Helen, 2018. "Institutions, Culture, and Wetland Values," IZA Discussion Papers 11848, Institute of Labor Economics (IZA).
    33. Xin Han & Feng Lu & Jun Hou & Xianming Kuang, 2022. "Impact of Haze Pollution on Industrial Agglomeration: Empirical Evidence From China," SAGE Open, , vol. 12(3), pages 21582440221, August.
    34. Ghassan Dibeh & Ali Fakih & Walid Marrouch & Ghida Matar, 2021. "Who Cares About Environmental Quality in the MENA Region?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 157(2), pages 603-629, September.
    35. Aller, Carlos & Ductor, Lorenzo & Herrerias, M.J., 2015. "The world trade network and the environment," Energy Economics, Elsevier, vol. 52(PA), pages 55-68.
    36. Carlos Aller & Lorenzo Ductor & Daryna Grechyna, 2020. "Robust Determinants of CO2 Emissions," ThE Papers 20/13, Department of Economic Theory and Economic History of the University of Granada..
    37. Yan Wang & Dong Yang, 2018. "Impacts of Freight Transport on PM 2.5 Concentrations in China: A Spatial Dynamic Panel Analysis," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    38. Wu, Xianhua & Deng, Huai & Li, Hua & Guo, Yiming, 2021. "Impact of Energy Structure Adjustment and Environmental Regulation on Air Pollution in China: Simulation and Measurement Research by the Dynamic General Equilibrium Model," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    39. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2022. "Institutional quality and its spatial spillover effects on energy efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    40. Jingkun Zhou & Juan Tian & Diandian Zhang, 2023. "Pollution Effect of the Agglomeration of Thermal Power and Other Air Pollution-Intensive Industries in China," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    41. Yang, Haisheng & He, Jie & Chen, Shaoling, 2015. "The fragility of the Environmental Kuznets Curve: Revisiting the hypothesis with Chinese data via an “Extreme Bound Analysis”," Ecological Economics, Elsevier, vol. 109(C), pages 41-58.
    42. Yanhua Guo & Lianjun Tong & Lin Mei, 2021. "Evaluation and Influencing Factors of Industrial Pollution in Jilin Restricted Development Zone: A Spatial Econometric Analysis," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    43. Meicun Li & Chunmei Mao, 2020. "Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region," IJERPH, MDPI, vol. 17(15), pages 1-12, August.
    44. Solarin, Sakiru Adebola & Al-Mulali, Usama & Musah, Ibrahim & Ozturk, Ilhan, 2017. "Investigating the pollution haven hypothesis in Ghana: An empirical investigation," Energy, Elsevier, vol. 124(C), pages 706-719.
    45. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Bajay, Sergio Valdir, 2016. "Nonconventional renewable energy governance in Brazil: Lessons to learn from the German experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 222-234.
    46. Markwardt, Gunther & Hecker, Lutz & Wätzold, Frank, 2019. "Spotlight on spatial environmental policy spillovers: An econometric analysis of wastewater treatment in Mexican municipalities," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203627, Verein für Socialpolitik / German Economic Association.
    47. Junaid Ashraf, 2022. "Do political risk and globalization undermine environmental quality? Empirical evidence from Belt and Road Initiative (BRI) countries," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3647-3664, December.
    48. Abolfazl Shahabadi & Hanieh Samari & Morteza Nemati, 2017. "The Factors Affecting Environmental Performance Index (EPI) in Selected OPEC Countries," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 21(3), pages 457-467, Summer.

  14. de Freitas, Luciano Charlita & Kaneko, Shinji, 2012. "Is there a causal relation between ethanol innovation and the market characteristics of fuels in Brazil?," Ecological Economics, Elsevier, vol. 74(C), pages 161-168.

    Cited by:

    1. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    2. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    3. Jang, Heesun & Du, Xiaodong, 2013. "Trajectory of Maturity: An Empirical Analysis of US Biofuel Innovations," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150132, Agricultural and Applied Economics Association.
    4. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    5. González-Gómez, Manuel & Álvarez-Díaz, Marcos & Otero-Giráldez, María Soledad, 2013. "Estimating the long-run impact of forest fires on the eucalyptus timber supply in Galicia, Spain," Journal of Forest Economics, Elsevier, vol. 19(2), pages 149-161.
    6. Sant'Anna, Ana Claudia & Shanoyan, Aleksan & Bergtold, Jason Scott & Caldas, Marcellus M. & Granco, Gabriel, 2016. "Ethanol and sugarcane expansion in Brazil: what is fueling the ethanol industry?," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(4), September.
    7. Oliveira, Sydnei Marssal de & Ribeiro, Celma de Oliveira & Cicogna, Maria Paula Vieira, 2018. "Uncertainty effects on production mix and on hedging decisions: The case of Brazilian ethanol and sugar," Energy Economics, Elsevier, vol. 70(C), pages 516-524.
    8. Ge, Xiaodong & Li, Yaoguang & Luloff, Albert E. & Dong, Kaikai & Xiao, Jun, 2015. "Effect of agricultural economic growth on sandy desertification in Horqin Sandy Land," Ecological Economics, Elsevier, vol. 119(C), pages 53-63.
    9. Castañeda-Ayarza, Juan Arturo & Godoi, Beatriz Araújo, 2021. "Macro-environmental influence on the development of Brazilian fuel ethanol between 1975 and 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Elina Bryngemark & Patrik Söderholm, 2022. "Green industrial policies and domestic production of biofuels: an econometric analysis of OECD countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 225-261, April.
    11. Yongli Zhang & Sanggyun Na & Jianguang Niu & Beichen Jiang, 2018. "The Influencing Factors, Regional Difference and Temporal Variation of Industrial Technology Innovation: Evidence with the FOA-GRNN Model," Sustainability, MDPI, vol. 10(1), pages 1-19, January.

  15. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    See citations under working paper version above.
  16. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.

    Cited by:

    1. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    2. Jérôme Trotignon, 2012. "Les émissions de CO2 du Brésil - L'impact du secteur UTCATF (usage des terres, changement d'affectation des terres et foresterie)," Working Papers halshs-00746524, HAL.
    3. Zaman, Khalid & Mushtaq Khan, Muhammad & Ahmad, Mehboob, 2013. "Factors affecting commercial energy consumption in Pakistan: Progress in energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 107-135.
    4. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
    5. Jana, Sebak Kumar & Lise, Wietze, 2023. "Carbon Emissions from Energy Use in India: Decomposition Analysis," MPRA Paper 117245, University Library of Munich, Germany.
    6. Yue-Jun Zhang & Ya-Bin Da, 2013. "Decomposing the changes of energy-related carbon emissions in China: Evidence from the PDA approach," CEEP-BIT Working Papers 45, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    7. Muhammad Uzair Ali & Zhimin Gong & Muhammad Ubaid Ali & Fahad Asmi & Rizwanullah Muhammad, 2022. "CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: A panel investigation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 18-31, January.
    8. Fujii, Hidemichi & Managi, Shunsuke, 2016. "Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors," MPRA Paper 69592, University Library of Munich, Germany.
    9. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    10. Kuşkaya, Sevda, 2022. "Residential solar energy consumption and greenhouse gas nexus: Evidence from Morlet wavelet transforms," Renewable Energy, Elsevier, vol. 192(C), pages 793-804.
    11. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    12. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
    13. Ščasný, M. & Ang, B.W. & Rečka, L., 2021. "Decomposition analysis of air pollutants during the transition and post-transition periods in the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Jérôme Trotignon, 2012. "Les émissions de CO2 du Brésil- L’impact du secteur UTCATF (usage des terres, changement d’affectation des terres et foresterie)," Working Papers 1232, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    15. Sanches-Pereira, Alessandro & Tudeschini, Luís Gustavo & Coelho, Suani Teixeira, 2016. "Evolution of the Brazilian residential carbon footprint based on direct energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 184-201.
    16. Kivyiro, Pendo & Arminen, Heli, 2014. "Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: Causality analysis for Sub-Saharan Africa," Energy, Elsevier, vol. 74(C), pages 595-606.
    17. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    18. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    19. Junsong Jia & Jing Lei & Chundi Chen & Xu Song & Yexi Zhong, 2021. "Contribution of Renewable Energy Consumption to CO 2 Emission Mitigation: A Comparative Analysis from a Global Geographic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    20. Zhao, Weigang & Cao, Yunfei & Miao, Bo & Wang, Ke & Wei, Yi-Ming, 2018. "Impacts of shifting China's final energy consumption to electricity on CO2 emission reduction," Energy Economics, Elsevier, vol. 71(C), pages 359-369.
    21. Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    22. Hidemichi Fujii & Shunsuke Managi, 2013. "Decomposition of Toxic Chemical Substance Management in Three U.S. Manufacturing Sectors from 1991 to 2008," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 461-471, June.
    23. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    24. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    25. Chen, Bin & Yan, Jun & Zhu, Xun & Liu, Yue, 2023. "The potential role of renewable power penetration in energy intensity reduction: Evidence from the Chinese provincial electricity sector," Energy Economics, Elsevier, vol. 127(PB).
    26. Shining Zhang & Fang Yang & Changyi Liu & Xing Chen & Xin Tan & Yuanbing Zhou & Fei Guo & Weiyi Jiang, 2020. "Study on Global Industrialization and Industry Emission to Achieve the 2 °C Goal Based on MESSAGE Model and LMDI Approach," Energies, MDPI, vol. 13(4), pages 1-21, February.
    27. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    28. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    29. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    30. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    31. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    32. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    33. João Tovar Jalles, 2019. "Polluting Emissions and GDP: Decoupling Evidence from Brazilian States," Working Papers REM 2019/0104, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    34. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    35. Vieira, Nathália Duarte Braz & Nogueira, Luiz Augusto Horta & Haddad, Jamil, 2018. "An assessment of CO2 emissions avoided by energy-efficiency programs: A general methodology and a case study in Brazil," Energy, Elsevier, vol. 142(C), pages 702-715.
    36. Wankeun Oh & Jonghyun Yoo, 2020. "Long-Term Increases and Recent Slowdowns of CO 2 Emissions in Korea," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    37. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    38. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    39. Gandhi, Oktoviano & Oshiro, Andre H. & Medeiros Costa, Hirdan Katarina de & Santos, Edmilson M., 2017. "Energy intensity trend explained for Sao Paulo state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1046-1054.
    40. Weigang Zhao & Yunfei Cao & Bo Miao & Ke Wang & Yi-Ming Wei, 2018. "Impacts of shifting China¡¯s final energy consumption to electricity on CO2 emission reduction," CEEP-BIT Working Papers 115, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    41. Tian, Lixin & Jin, Rulei, 2012. "Theoretical exploration of carbon emissions dynamic evolutionary system and evolutionary scenario analysis," Energy, Elsevier, vol. 40(1), pages 376-386.
    42. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    43. Libin Feng & Zhengcheng Sun, 2023. "The Impact of Green Finance Pilot Policy on Carbon Intensity in Chinese Cities—Based on the Synthetic Control Method," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    44. Pan, Xiongfeng & Guo, Shucen & Xu, Haitao & Tian, Mengyuan & Pan, Xianyou & Chu, Junhui, 2022. "China's carbon intensity factor decomposition and carbon emission decoupling analysis," Energy, Elsevier, vol. 239(PC).
    45. Fujii, Hidemichi & Managi, Shunsuke & Kaneko, Shinji, 2019. "Decomposition analysis of air pollution abatement in China: Empirical study for ten industrial sectors from 1998 to 2009," MPRA Paper 92234, University Library of Munich, Germany.
    46. Ratanavaraha, Vatanavongs & Jomnonkwao, Sajjakaj, 2015. "Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation," Transport Policy, Elsevier, vol. 41(C), pages 136-146.
    47. Kofi Adom, Philip & Bekoe, William & Amuakwa-Mensah, Franklin & Mensah, Justice Tei & Botchway, Ebo, 2012. "Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics," Energy, Elsevier, vol. 47(1), pages 314-325.
    48. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    49. Al-mulali, Usama & Binti Che Sab, Che Normee, 2012. "The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries," Energy, Elsevier, vol. 39(1), pages 180-186.
    50. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    51. Jingfen Hua & Junli Gao & Ke Chen & Jiaqi Li, 2022. "Driving Effect of Decoupling Provincial Industrial Economic Growth and Industrial Carbon Emissions in China," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    52. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2017. "Driving forces for aggregate energy consumption: A cross-country approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1033-1050.

  17. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Ethanol demand under the flex-fuel technology regime in Brazil," Energy Economics, Elsevier, vol. 33(6), pages 1146-1154.

    Cited by:

    1. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    2. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    3. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    4. Nunez, Hector & Onal, Hayri, 2013. "An Economic Analysis of Transportation Fuel Policies in Brazil," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149973, Agricultural and Applied Economics Association.
    5. Santos, Gervásio F., 2013. "Fuel demand in Brazil in a dynamic panel data approach," Energy Economics, Elsevier, vol. 36(C), pages 229-240.
    6. Zaman Sajid & Maria Aparecida Batista da Silva & Syed Nasir Danial, 2021. "Historical Analysis of the Role of Governance Systems in the Sustainable Development of Biofuels in Brazil and the United States of America (USA)," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    7. Rodrigues, Luciano & Bacchi, Mirian Rumenos Piedade, 2017. "Analyzing light fuel demand elasticities in Brazil using cointegration techniques," Energy Economics, Elsevier, vol. 63(C), pages 322-331.
    8. Moncada, J.A. & Verstegen, J.A. & Posada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2018. "Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach," Energy Policy, Elsevier, vol. 123(C), pages 619-641.
    9. Odziemkowska, Małgorzata & Matuszewska, Anna & Czarnocka, Joanna, 2016. "Diesel oil with bioethanol as a fuel for compression-ignition engines," Applied Energy, Elsevier, vol. 184(C), pages 1264-1272.
    10. Rodrigues, Niágara & Losekann, Luciano & Silveira Filho, Getulio, 2018. "Demand of automotive fuels in Brazil: Underlying energy demand trend and asymmetric price response," Energy Economics, Elsevier, vol. 74(C), pages 644-655.
    11. de Barros, Marisa Maia & Szklo, Alexandre, 2015. "Petroleum refining flexibility and cost to address the risk of ethanol supply disruptions: The case of Brazil," Renewable Energy, Elsevier, vol. 77(C), pages 20-31.
    12. Chanthawong, Anuman & Dhakal, Shobhakar & Jongwanich, Juthathip, 2016. "Supply and demand of biofuels in the fuel market of Thailand: Two stage least square and three least square approaches," Energy, Elsevier, vol. 114(C), pages 431-443.
    13. Hector M. Nuñez and Jesús Otero, 2017. "Integration in Gasoline and Ethanol Markets in Brazil over Time and Space under the Flex-fuel Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    14. Brexó, Ramon Peres & Sant’Ana, Anderson S., 2017. "Impact and significance of microbial contamination during fermentation for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 423-434.
    15. Leonardo Chaves Borges Cardoso & Maurício Vaz Lobo Bittencourt & Alexandre Alves Porsse, 2014. "Demanda Por Combustíveis Leves No Brasil: Uma Abordagem Utilizando Painéis Espaciais Dinâmicos," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 194, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    16. Silva, Anderson Luís da & Castañeda-Ayarza, Juan Arturo, 2021. "Macro-environment analysis of the corn ethanol fuel development in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Aloisio S. Nascimento Filho & Rafael G. O. dos Santos & João Gabriel A. Calmon & Peterson A. Lobato & Marcelo A. Moret & Thiago B. Murari & Hugo Saba, 2022. "Induction of a Consumption Pattern for Ethanol and Gasoline in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-11, July.
    18. Mauricio Vaz Lobo Bittencourt & Leonardo Chaves Borges Cardoso & Elena Grace Irwin, 2016. "Biofuels Policies And Fuel Demand Elasticities In Brazil: An Iv Approach," Anais do XLIII Encontro Nacional de Economia [Proceedings of the 43rd Brazilian Economics Meeting] 181, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    19. Laurini, Márcio Poletti, 2017. "The spatio-temporal dynamics of ethanol/gasoline price ratio in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1-12.
    20. Jose Cantos & Robert Dixon, 2014. "Impacts of bioethanol on gasoline prices in the Philippines: an econometric analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 1-13, January.
    21. Ghassen El Montasser & Rangan Gupta & Andre Luis Martins & Peter Wanke, 2014. "Are there Multiple Bubbles in the Ethanol-Gasoline Price Ratio of Brazil?," Working Papers 201479, University of Pretoria, Department of Economics.
    22. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.
    23. Cardoso, Leonardo C.B. & Bittencourt, Maurício V.L. & Litt, Wade H. & Irwin, Elena G., 2019. "Biofuels policies and fuel demand elasticities in Brazil," Energy Policy, Elsevier, vol. 128(C), pages 296-305.
    24. Amaral-Santos, Roberto & Chimeli, Ariaster & Pessoa, João Paulo, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," TD NEREUS 7-2023, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).

  18. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.

    Cited by:

    1. Yanli Ji & Jie Xue, 2022. "Decoupling Effect of County Carbon Emissions and Economic Growth in China: Empirical Evidence from Jiangsu Province," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    2. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    3. Jérôme Trotignon, 2012. "Les émissions de CO2 du Brésil - L'impact du secteur UTCATF (usage des terres, changement d'affectation des terres et foresterie)," Working Papers halshs-00746524, HAL.
    4. Eka Sudarmaji & Noer Azam Achsani & Yandra Arkeman & Idqan Fahmi, 2021. "Can Energy Intensity Impede the CO2 Emissions in Indonesia? LMDI-Decomposition Index and ARDL: Comparison between Indonesia and ASEAN Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 308-318.
    5. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.
    6. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    7. Polemis, Michael & Fotis, Panagiotis & Tzeremes, Panagiotis & Tzeremes, Nickolaos, 2021. "On the examination of the decoupling effect of air pollutants from economic growth: A convergence analysis for the US," MPRA Paper 106412, University Library of Munich, Germany.
    8. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    9. Mundaca T., Luis & Markandya, Anil & Nørgaard, Jørgen, 2013. "Walking away from a low-carbon economy? Recent and historical trends using a regional decomposition analysis," Energy Policy, Elsevier, vol. 61(C), pages 1471-1480.
    10. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    11. Jingxing Liu & Hailing Li & Tianqi Liu, 2022. "Decoupling Regional Economic Growth from Industrial CO 2 Emissions: Empirical Evidence from the 13 Prefecture-Level Cities in Jiangsu Province," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    12. Weiwu Wang & Huan Chen & Lizhong Wang & Xinyu Li & Danyi Mao & Shan Wang, 2022. "Exploration of Spatio-Temporal Characteristics of Carbon Emissions from Energy Consumption and Their Driving Factors: A Case Analysis of the Yangtze River Delta, China," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    13. Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
    14. Xiaowei Zhai & Zhuo Cheng & Keyu Ai & Bo Shang, 2020. "Research on Environmental Sustainability of Coal Cities: A Case Study of Yulin, China," Energies, MDPI, vol. 13(10), pages 1-21, May.
    15. Yannan Zhou & Jixia Huang & Mingxiang Huang & Yicheng Lin, 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia," IJERPH, MDPI, vol. 16(10), pages 1-14, May.
    16. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    17. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    18. Liu, Xiaoguang & Ji, Qiang & Yu, Jian, 2021. "Sustainable development goals and firm carbon emissions: Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 103(C).
    19. Decai Tang & Yan Zhang & Brandon J. Bethel, 2019. "An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(8), pages 1-13, April.
    20. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
    21. Li-Jing Liu & Qiao-Mei Liang & Felix Creutzig & Nan Cheng & Lan-Cui Liu, 2021. "Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China," Climatic Change, Springer, vol. 167(1), pages 1-22, July.
    22. Yao Bo Shi & Xin Xin Zhao & Chyi-Lu Jang & Chun-Ping Chang, 2019. "Decoupling effect between economic development and environmental pollution: A spatial-temporal investigation using 31 provinces in China," Energy & Environment, , vol. 30(5), pages 755-775, August.
    23. Jérôme Trotignon, 2012. "Les émissions de CO2 du Brésil- L’impact du secteur UTCATF (usage des terres, changement d’affectation des terres et foresterie)," Working Papers 1232, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    24. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    25. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    26. Ting Lou & Jianhui Ma & Yu Liu & Lei Yu & Zhaopeng Guo & Yan He, 2022. "A Heterogeneity Study of Carbon Emissions Driving Factors in Beijing-Tianjin-Hebei Region, China, Based on PGTWR Model," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    27. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
    28. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    29. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    30. Ren, Shenggang & Hu, Zhen, 2012. "Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 43(C), pages 407-414.
    31. Jianbo Hu & Shanshan Gui & Wei Zhang, 2017. "Decoupling Analysis of China’s Product Sector Output and Its Embodied Carbon Emissions—An Empirical Study Based on Non-Competitive I-O and Tapio Decoupling Model," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    32. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
    33. Qingshan Yang & Jie Liu & Yu Zhang, 2017. "Decoupling Agricultural Nonpoint Source Pollution from Crop Production: A Case Study of Heilongjiang Land Reclamation Area, China," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    34. Zhao, Xingrong & Zhang, Xi & Shao, Shuai, 2016. "Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment," Energy Economics, Elsevier, vol. 60(C), pages 275-292.
    35. Ming Zhang & Wenwen Wang, 2014. "Analysis of spatial distribution of global energy-related CO 2 emissions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 165-171, September.
    36. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    37. Xiaojing Zhao & Xuke Li & Guoqu Deng & Yanling Xi, 2023. "Decoupling Relationship between Resource Environment and High-Quality Economic Development in the Yellow River Basin," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    38. Cheng-Yih Hong & Yu-Shuang Yen, 2019. "A Way from Renewable Energy Sources to Urban Sustainable Development: Empirical Evidences from Taichung City," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 83-88.
    39. Yan Song & Ming Zhang, 2017. "Using a new decoupling indicator (ZM decoupling indicator) to study the relationship between the economic growth and energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1013-1022, September.
    40. Mariana Conte Grand, 2018. "Desacople y Descomposición del Consumo Final de Energía en Argentina," CEMA Working Papers: Serie Documentos de Trabajo. 678, Universidad del CEMA.
    41. José M. Cansino & Rocio Román-Collado & Juan C. Molina, 2019. "Quality of Institutions, Technological Progress, and Pollution Havens in Latin America. An Analysis of the Environmental Kuznets Curve Hypothesis," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    42. Wei Li & Guomin Li & Rongxia Zhang & Wen Sun & Wen Wu & Baihui Jin & Pengfei Cui, 2017. "Carbon Reduction Potential of Resource-Dependent Regions Based on Simulated Annealing Programming Algorithm," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    43. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    44. Wu, Ya & Zhu, Qianwen & Zhu, Bangzhu, 2018. "Comparisons of decoupling trends of global economic growth and energy consumption between developed and developing countries," Energy Policy, Elsevier, vol. 116(C), pages 30-38.
    45. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    46. Salahuddin, Mohammad & Gow, Jeff, 2014. "Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries," Energy, Elsevier, vol. 73(C), pages 44-58.
    47. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
    48. Giray Gozgor & Sudharshan Reddy Paramati, 2021. "Does Energy Diversification Cause an Economic Slowdown? Evidence from a Newly Constructed Energy Diversification Index," CESifo Working Paper Series 9247, CESifo.
    49. Lu Wan & Zi-Long Wang & Jhony Choon Yeong Ng, 2016. "Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China," Energies, MDPI, vol. 9(11), pages 1-17, November.
    50. Pengyan Zhang & Yu Zhang & Jay Lee & Yanyan Li & Jiaxin Yang & Wenliang Geng & Ying Liu & Tianqi Rong & Jingwen Shao & Bin Li, 2020. "Characteristics of the Spatio-Temporal Trends and Driving Factors of Industrial Development and Industrial SO 2 Emissions Based on Niche Theory: Taking Henan Province as an Example," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    51. Ming-Ming Zhao & Rongrong Li, 2018. "Decoupling and decomposition analysis of carbon emissions from economic output in Chinese Guangdong Province: A sector perspective," Energy & Environment, , vol. 29(4), pages 543-555, June.
    52. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    53. Zhang, Ming & Guo, Fangyan, 2013. "Analysis of rural residential commercial energy consumption in China," Energy, Elsevier, vol. 52(C), pages 222-229.
    54. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    55. Eka Sudarmaji & Noer Azam Achsani & Yandra Arkeman & Idqan Fahmi, 2022. "Decomposition Factors Household Energy Subsidy Consumption in Indonesia: Kaya Identity and Logarithmic Mean Divisia Index Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 355-364.
    56. Doreen Fedrigo-Fazio & Jean-Pierre Schweitzer & Patrick Ten Brink & Leonardo Mazza & Alison Ratliff & Emma Watkins, 2016. "Evidence of Absolute Decoupling from Real World Policy Mixes in Europe," Sustainability, MDPI, vol. 8(6), pages 1-22, May.
    57. Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    58. Wei Li & Shuang Sun & Hao Li, 2015. "Decomposing the decoupling relationship between energy-related CO 2 emissions and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 977-997, November.
    59. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    60. Xianjin Lin & Xiaoyan Lin & Jun Zhang & Qionge He & Pengyu Yan, 2022. "Simulation Analysis of Factors Affecting Energy Carbon Emissions in Fujian Province," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
    61. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    62. João Tovar Jalles, 2019. "Polluting Emissions and GDP: Decoupling Evidence from Brazilian States," Working Papers REM 2019/0104, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    63. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
    64. Relva, Stefania Gomes & Silva, Vinícius Oliveira da & Gimenes, André Luiz Veiga & Udaeta, Miguel Edgar Morales & Ashworth, Peta & Peyerl, Drielli, 2021. "Enhancing developing countries’ transition to a low-carbon electricity sector," Energy, Elsevier, vol. 220(C).
    65. Zbigniew Gołaś, 2023. "Decoupling Analysis of Energy-Related Carbon Dioxide Emissions from Economic Growth in Poland," Energies, MDPI, vol. 16(9), pages 1-27, April.
    66. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
    67. Mohamad Taghvaee, Vahid & Hajiani, Parviz, 2016. "Environment, Energy and Environmental Productivity of Energy: A Decomposition Analysis in China and the US," MPRA Paper 70055, University Library of Munich, Germany.
    68. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    69. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    70. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    71. Nihal Ahmed & Adnan Ahmed Sheikh & Farhan Mahboob & Muhammad Sibt e Ali & Elżbieta Jasińska & Michał Jasiński & Zbigniew Leonowicz & Alessandro Burgio, 2022. "Energy Diversification: A Friend or Foe to Economic Growth in Nordic Countries? A Novel Energy Diversification Approach," Energies, MDPI, vol. 15(15), pages 1-15, July.
    72. Victor MOUTINHO & Margarita ROBAINA & Pedro MACEDO, 2018. "Economic-environmental efficiency of European agriculture - a generalized maximum entropy approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 423-435.
    73. Yanan Wu & Zinb Abduljabbar Mohamed Al-Duais & Biyu Peng, 2023. "Towards a low-carbon society: spatial distribution, characteristics and implications of digital economy and carbon emissions decoupling," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    74. Mathy Sane & Miroslav Hajek & Joseph Phiri & Jamilu Said Babangida & Chukwudi Nwaogu, 2022. "Application of Decoupling Approach to Evaluate Electricity Consumption, Agriculture, GDP, Crude Oil Production, and CO 2 Emission Nexus in Support of Economic Instrument in Nigeria," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    75. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    76. Faqeer Muhammad & Rehmat Karim & Khair Muhammad & Amna Asghar, 2020. "Population Density, CO2 Emission and Energy Consumption in Pakistan: A Multivariate Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 250-255.
    77. Susana Silva & Isabel Soares & Oscar Afonso, 2021. "Decoupling economic growth from emissions: the case of policies promoting resource substitution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8331-8347, June.
    78. Shuang Dai & Ming Zhang & Wei Huang, 2016. "Decomposing the decoupling of CO2 emission from economic growth in BRICS countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1055-1073, November.
    79. Liu, Bofan & Olayinka, Olohunlana Aminat & Sofuoğlu, Emrah & Abbas, Shujaat & Sinha, Avik, 2023. "Should Asia Pacific economic cooperation countries put all their eggs in one energy basket? Examining the linkage between energy diversification and sustainable development," Energy Policy, Elsevier, vol. 179(C).
    80. Xia Wang & Peiru Cai, 2022. "The relationship between tourism development and multidimensional poverty reduction: A decoupling analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2501-2518, August.
    81. Andewi Rokhmawati & Nasti Weniagustin & Fitri Fitri & Haryetti Haryetti & Ifa Adina Yafiz, 2018. "Regulation of Reducing Carbon Emissions: Is It Effectively Implemented to Develop Competitiveness of Indonesian Manufacturing Firms?," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 258-266.
    82. Ozdemir, Ali Can, 2023. "Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey," Energy, Elsevier, vol. 273(C).
    83. Yan Song & Ming Zhang & Shuang Dai, 2015. "Study on China’s energy-related CO 2 emission at provincial level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 89-100, May.
    84. Song, Yan & Zhang, Ming, 2019. "Research on the gravity movement and mitigation potential of Asia's carbon dioxide emissions," Energy, Elsevier, vol. 170(C), pages 31-39.
    85. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    86. Ouyang, Xiaoling & Fang, Xingming & Cao, Yan & Sun, Chuanwang, 2020. "Factors behind CO2 emission reduction in Chinese heavy industries: Do environmental regulations matter?," Energy Policy, Elsevier, vol. 145(C).
    87. Yalan Zhao & Yaoqiu Kuang & Ningsheng Huang, 2016. "Decomposition Analysis in Decoupling Transport Output from Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 9(4), pages 1-23, April.
    88. Zhe Wang & Lin Zhao & Guozhu Mao & Ben Wu, 2015. "Eco-Efficiency Trends and Decoupling Analysis of Environmental Pressures in Tianjin, China," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
    89. Elisabeth Conrad & Louis F. Cassar, 2014. "Decoupling Economic Growth and Environmental Degradation: Reviewing Progress to Date in the Small Island State of Malta," Sustainability, MDPI, vol. 6(10), pages 1-22, September.
    90. Dequn Zhou & Lu Zhang & Donglan Zha & Fei Wu & Qunwei Wang, 2019. "Decoupling and decomposing analysis of construction industry’s energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 39-53, January.
    91. Rubio-Varas, Mar & Muñoz-Delgado, Beatriz, 2019. "Long-term diversification paths and energy transitions in Europe," Ecological Economics, Elsevier, vol. 163(C), pages 158-168.
    92. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    93. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    94. Rong Li & Zi Chen & Junyong Xiang, 2023. "A region-scale decoupling effort analysis of carbon dioxide emissions from the perspective of electric power industry: a case study of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4007-4032, May.
    95. Min Su & Shasha Wang & Rongrong Li & Ningning Guo, 2020. "Decomposition analysis of the decoupling process between economic growth and carbon emission in Beijing city, China: A sectoral perspective," Energy & Environment, , vol. 31(6), pages 961-982, September.
    96. Mariana Conte Grand, 2017. "Beyond the Question “Is there Decoupling?” A Decoupling Ranking," CEMA Working Papers: Serie Documentos de Trabajo. 622, Universidad del CEMA.
    97. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    98. Rui Jiang & Yulin Zhou & Rongrong Li, 2018. "Moving to a Low-Carbon Economy in China: Decoupling and Decomposition Analysis of Emission and Economy from a Sector Perspective," Sustainability, MDPI, vol. 10(4), pages 1-12, March.
    99. Carlos Scheel & Eduardo Aguiñaga & Bernardo Bello, 2020. "Decoupling Economic Development from the Consumption of Finite Resources Using Circular Economy. A Model for Developing Countries," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    100. Ming Zhang & Qing Xia & Wenwen Wang & Min Zhou, 2014. "Study on temporal and spatial evolution of China’s oil supply and consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 809-825, June.
    101. Yu, Yadong & Ren, Hongtao & Kharrazi, Ali & Ma, Tieju & Zhu, Bing, 2015. "Exploring socioeconomic drivers of environmental pressure on the city level: The case study of Chongqing in China," Ecological Economics, Elsevier, vol. 118(C), pages 123-131.
    102. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2017. "Driving forces for aggregate energy consumption: A cross-country approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1033-1050.
    103. Jiandong Chen & Sishi Rong & Malin Song, 2021. "Poverty Vulnerability and Poverty Causes in Rural China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 65-91, January.
    104. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    105. Yingying Zhou & Yaru Xu & Chuanzhe Liu & Zhuoqing Fang & Jiayi Guo, 2019. "Spatial Effects of Technological Progress and Financial Support on China’s Provincial Carbon Emissions," IJERPH, MDPI, vol. 16(10), pages 1-22, May.
    106. Katarzyna Frodyma & Monika Papież & Sławomir Śmiech, 2020. "Decoupling Economic Growth from Fossil Fuel Use—Evidence from 141 Countries in the 25-Year Perspective," Energies, MDPI, vol. 13(24), pages 1-21, December.

  19. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Ethanol demand in Brazil: Regional approach," Energy Policy, Elsevier, vol. 39(5), pages 2289-2298, May.

    Cited by:

    1. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    2. Jana, Kuntal & De, Sudipta, 2015. "Polygeneration using agricultural waste: Thermodynamic and economic feasibility study," Renewable Energy, Elsevier, vol. 74(C), pages 648-660.
    3. Ngui, Dianah & Mutua, John & Osiolo, Hellen & Aligula, Eric, 2011. "Household energy demand in Kenya: An application of the linear approximate almost ideal demand system (LA-AIDS)," Energy Policy, Elsevier, vol. 39(11), pages 7084-7094.
    4. Sébastien Pouliot & Kenneth A Liao & Bruce A Babcock, 2018. "Estimating Willingness to Pay for E85 in the United States Using an Intercept Survey of Flex Motorists," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(5), pages 1486-1509.
    5. Frederico Uch a & Cleiton Silva de Jesus & Leonardo Chaves Borges Cardoso, 2020. "Fuel Demand Elasticities in Brazil: A Panel Data Analysis with Instrumental Variables," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 450-457.
    6. Hector M. Nuñez and Jesús Otero, 2017. "Integration in Gasoline and Ethanol Markets in Brazil over Time and Space under the Flex-fuel Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. A. Khoodaruth, 2016. "Contribution of the sugar cane industry to reduce carbon dioxide emissions in the energy sector: the case of Mauritius," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1719-1731, December.
    8. Rosas-Flores, Jorge Alberto, 2017. "Elements for the development of public policies in the residential sector of Mexico based in the Energy Reform and the Energy Transition law," Energy Policy, Elsevier, vol. 104(C), pages 253-264.
    9. Laurini, Márcio Poletti, 2017. "The spatio-temporal dynamics of ethanol/gasoline price ratio in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1-12.
    10. Drabik, Dusan & de Gorter, Harry & Just, David R. & Timilsina, Govinda R., 2014. "An Economic Model of Brazil’s Ethanol-Sugar Markets and Impacts of Fuel Policies," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182709, European Association of Agricultural Economists.
    11. Yahya F. Anouti & Carol A. Dahl, 2014. "Rationalizing Transport Fuels Pricing Policies and Effects on Global Fuel Consumption, Emissions, Government Revenues and Welfare," Working Papers 2014-01, Colorado School of Mines, Division of Economics and Business.
    12. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.

  20. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim, 2011. "Are micro-benefits negligible? The implications of the rapid expansion of Solar Home Systems (SHS) in rural Bangladesh for sustainable development," Energy Policy, Elsevier, vol. 39(7), pages 4022-4031, July.

    Cited by:

    1. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    2. Khan, Tahsina & Khanam, Shamsun Nahar & Rahman, Md Habibur & Rahman, Syed Mahbubur, 2019. "Determinants of microfinance facility for installing solar home system (SHS) in rural Bangladesh," Energy Policy, Elsevier, vol. 132(C), pages 299-308.
    3. Davide Forcella & Marek Hudon, 2014. "Green Microfinance in Europe," Working Papers CEB 14-020, ULB -- Universite Libre de Bruxelles.
    4. Pode, Ramchandra, 2013. "Financing LED solar home systems in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 596-629.
    5. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    6. Marion Allet & Marek Hudon, 2015. "Green Microfinance: Characteristics of Microfinance Institutions Involved in Environmental Management," Journal of Business Ethics, Springer, vol. 126(3), pages 395-414, February.
    7. Ebers Broughel, Anna, 2019. "On the ground in sunny Mexico: A case study of consumer perceptions and willingness to pay for solar-powered devices," World Development Perspectives, Elsevier, vol. 15(C), pages 1-1.
    8. Xavier Lemaire, 2018. "Solar home systems and solar lanterns in rural areas of the Global South: What impact?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    9. Kurata, Masamitsu & Matsui, Noriatsu & Ikemoto, Yukio & Tsuboi, Hiromi, 2018. "Do determinants of adopting solar home systems differ between households and micro-enterprises? Evidence from rural Bangladesh," Renewable Energy, Elsevier, vol. 129(PA), pages 309-316.
    10. Swati Anindita Sarker & Shouyang Wang & K M Mehedi Adnan & Muhammad Khalid Anser & Zeraibi Ayoub & Thu Hau Ho & Riffat Ara Zannat Tama & Anna Trunina & Md Mahmudul Hoque, 2020. "Economic Viability and Socio-Environmental Impacts of Solar Home Systems for Off-Grid Rural Electrification in Bangladesh," Energies, MDPI, vol. 13(3), pages 1-15, February.
    11. Elizabeth Baldwin & Jennifer N. Brass & Sanya Carley & Lauren M. MacLean, 2015. "Electrification and rural development: issues of scale in distributed generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 196-211, March.
    12. Liao, Chuan & Erbaugh, James T. & Kelly, Allison C. & Agrawal, Arun, 2021. "Clean energy transitions and human well-being outcomes in Lower and Middle Income Countries: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Dilruba Khanam & Muhammad Mohiuddin & Asadul Hoque & Olaf Weber, 2018. "Financing micro-entrepreneurs for poverty alleviation: a performance analysis of microfinance services offered by BRAC, ASA, and Proshika from Bangladesh," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 8(1), pages 1-17, December.
    14. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    15. Mukisa, Nicholas & Manitisa, Mele Sikimeti & Nduhuura, Paul & Tugume, Erick & Chalwe, Chanda Karen, 2022. "Solar home systems adoption in Sub-Saharan African countries: Household economic and environmental benefits assessment," Renewable Energy, Elsevier, vol. 189(C), pages 836-852.
    16. Davide Forcella & Marek Hudon, 2016. "Green Microfinance in Europe," Journal of Business Ethics, Springer, vol. 135(3), pages 445-459, May.
    17. Wagner, Natascha & Rieger, Matthias & Bedi, Arjun S. & Vermeulen, Jurgen & Demena, Binyam Afewerk, 2021. "The impact of off-grid solar home systems in Kenya on energy consumption and expenditures," Energy Economics, Elsevier, vol. 99(C).
    18. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    19. Gottesfeld, Perry & Cherry, Christopher R., 2011. "Lead emissions from solar photovoltaic energy systems in China and India," Energy Policy, Elsevier, vol. 39(9), pages 4939-4946, September.
    20. Ahmed, Shamsuddin & Islam, Md Tasbirul & Karim, Mohd Aminul & Karim, Nissar Mohammad, 2014. "Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh," Renewable Energy, Elsevier, vol. 72(C), pages 223-235.
    21. Nathanael Ojong, 2021. "Solar Home Systems in South Asia: Examining Adoption, Energy Consumption, and Social Practices," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    22. Jashim Uddin Ahmed & Niza Talukder & Asma Ahmed, 2020. "Infrastructure Development Company Limited Solar Home System Program: A Sustainable Solution for Energizing Rural Bangladesh," South Asian Journal of Business and Management Cases, , vol. 9(2), pages 219-236, August.
    23. Tinta, Abdoulganiour Almame & Sylla, Ahmed Yves & Lankouande, Edmond, 2023. "Solar PV adoption in rural Burkina Faso," Energy, Elsevier, vol. 278(PB).
    24. Rahman, Syed M. & Ahmad, Mokbul M., 2013. "Solar Home System (SHS) in rural Bangladesh: Ornamentation or fact of development?," Energy Policy, Elsevier, vol. 63(C), pages 348-354.
    25. Mishra, Pulak & Behera, Bhagirath, 2016. "Socio-economic and environmental implications of solar electrification: Experience of rural Odisha," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 953-964.
    26. Thomas, P.J.M. & Sandwell, P. & Williamson, S.J. & Harper, P.W., 2021. "A PESTLE analysis of solar home systems in refugee camps in Rwanda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    27. Li, Xuesong & Li, Hao & Wang, Xingwu, 2013. "Farmers' willingness to convert traditional houses to solar houses in rural areas: A survey of 465 households in Chongqing, China," Energy Policy, Elsevier, vol. 63(C), pages 882-886.

  21. Andrey Kalugin & Satoru Komatsu & Shinji Kaneko & Olena Slozko, 2010. "Citizens’ Perception of Past Environmental Damage and Liability in Countries with Transition: Evidence from Kemerovo, Russia," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 17(4), pages 763-776, December.

    Cited by:

    1. Satoru Komatsu & Andrey Kalugin & Shinji Kaneko, 2011. "Allocating Costs of Environmental Management among Generations: A Case of Environmental Liabilities in Transition Economies," IDEC DP2 Series 1-7, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).

  22. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.

    Cited by:

    1. Cheng, Louis T.W. & Shen, Jianfu & Wojewodzki, Michal, 2023. "A cross-country analysis of corporate carbon performance: An international investment perspective," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Adom, Philip Kofi, 2015. "Determinants of energy intensity in South Africa: Testing for structural effects in parameters," Energy, Elsevier, vol. 89(C), pages 334-346.
    3. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    4. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    5. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    6. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    7. KWAKWA, Paul Adjei & ALHASSAN, Hamdiyah & ADZAWLA, William, 2020. "The Long-Run Environmental Effect Of Aquaculture And Food Trade In Egypt," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 23(2), October.
    8. Ylli H. Doci, 2017. "Theoretical Considerations to Improve a Good Questionnaire on Tolerance," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 3, January -.
    9. Shahbaz, Muhammad & Mallick, Hrushikesh & Kumar, Mantu & Sadorsky, Perry, 2016. "The Role of Globalization on the Recent Evolution of Energy Demand in India: Implications for Sustainable Development," MPRA Paper 69127, University Library of Munich, Germany, revised 31 Jan 2016.
    10. Zohra Dradra & Chokri Abdennadher, 2023. "Modeling the effects of renewable energy on sustainable development: evidence from simultaneous equations models," Economic Change and Restructuring, Springer, vol. 56(4), pages 2111-2128, August.
    11. Ji Han & Xing Meng & Yanqi Zhang & Jiabin Liu, 2017. "The Impact of Infrastructure Stock Density on CO 2 Emissions: Evidence from China Provinces," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    12. Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Park, Musik & Wang, Zhiyuan & Li, Lanyu & Wang, Xiaonan, 2023. "Multi-objective building energy system optimization considering EV infrastructure," Applied Energy, Elsevier, vol. 332(C).
    14. Feng Dong & Ruyin Long & Zhuolin Li & Yuanju Dai, 2016. "Analysis of carbon emission intensity, urbanization and energy mix: evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1375-1391, June.
    15. Yabo Zhao & Shaojian Wang, 2015. "The Relationship between Urbanization, Economic Growth and Energy Consumption in China: An Econometric Perspective Analysis," Sustainability, MDPI, vol. 7(5), pages 1-19, May.
    16. Oruj Gasimli & Ihtisham ul Haq & Sisira Kumara Naradda Gamage & Fadi Shihadeh & Prasanna Sisira Kumara Rajapakshe & Muhammad Shafiq, 2019. "Energy, Trade, Urbanization and Environmental Degradation Nexus in Sri Lanka: Bounds Testing Approach," Energies, MDPI, vol. 12(9), pages 1-16, April.
    17. Qiu Chen & Haoran Yang & Wenguo Wang & Tianbiao Liu, 2019. "Beyond the City: Effects of Urbanization on Rural Residential Energy Intensity and CO 2 Emissions," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    18. Nguyen Quan & Makoto Kakinaka & Koji Kotani, 2017. "How does urbanization affect energy and CO2 emission intensities in Vietnam? Evidence from province-level data," Working Papers SDES-2017-8, Kochi University of Technology, School of Economics and Management, revised Jun 2017.
    19. Sakariyahu, Rilwan & Lawal, Rodiat & Etudaiye-Muhtar, Oyebola Fatima & Ajide, Folorunsho Monsuru, 2023. "Reflections on COP27: How do technological innovations and economic freedom affect environmental quality in Africa?," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    20. Muhammad, Sulaman & Long, Xingle & Salman, Muhammad & Dauda, Lamini, 2020. "Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries," Energy, Elsevier, vol. 196(C).
    21. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    22. Chang, Chun-Ping & Dong, Minyi & Liu, Jiliang, 2019. "Environmental Governance and Environmental Performance," ADBI Working Papers 936, Asian Development Bank Institute.
    23. Tengfei Zhang & Yang Song & Jun Yang, 2021. "Relationships between urbanization and CO2 emissions in China: An empirical analysis of population migration," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-20, August.
    24. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    25. Dominik Hartmann & Diogo Ferraz & Mayra Bezerra & Andreas Pyka & Flavio L. Pinheiro, 2021. "Comparing cars with apples? Identifying the appropriate benchmark countries for relative ecological pollution rankings and international learning," Papers 2107.14365, arXiv.org.
    26. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    27. Cai, Zhengyu & Yu, Chin-Hsien & Zhu, Chunhui, 2021. "Government-led urbanization and natural gas demand in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    28. Ali, Amjad & Audi, Marc & ŞENTÜRK, İsmail & Roussel, Yannick, 2021. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," MPRA Paper 111215, University Library of Munich, Germany.
    29. Tianyi Zeng & Hong Jin & Xu Gang & Zihang Kang & Jiayi Luan, 2022. "County Economy, Population, Construction Land, and Carbon Intensity in a Shrinkage Scenario," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    30. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    31. Chen, Shiyi & Jin, Hao & Lu, Yulin, 2019. "Impact of urbanization on CO2 emissions and energy consumption structure: A panel data analysis for Chinese prefecture-level cities," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 107-119.
    32. Franco, Sainu & Mandla, Venkata Ravibabu & Ram Mohan Rao, K., 2017. "Urbanization, energy consumption and emissions in the Indian context A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 898-907.
    33. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    34. O.S. Mariev & N.B. Davidson & O.S. Emelianova, 2020. "The Impact of Urbanization on Carbon Dioxide Emissions in the Regions of Russia," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 19(3), pages 286-309.
    35. Jianghua Liu & Mengxu Li & Yitao Ding, 2021. "Econometric analysis of the impact of the urban population size on carbon dioxide (CO2) emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18186-18203, December.
    36. Yue, Shujing & Lu, Rou & Shen, Yongchang & Chen, Hongtao, 2019. "How does financial development affect energy consumption? Evidence from 21 transitional countries," Energy Policy, Elsevier, vol. 130(C), pages 253-262.
    37. Xingle Long & Yusen Luo & Huaping Sun & Gang Tian, 2018. "Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1573-1591, July.
    38. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    39. Acheampong, Alex O. & Dzator, Janet & Dzator, Michael & Salim, Ruhul, 2022. "Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    40. Joseph R. Burger & James H. Brown & John W. Day & Tatiana P. Flanagan & Eric D. Roy, 2019. "The Central Role of Energy in the Urban Transition: Global Challenges for Sustainability," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-13, March.
    41. Andrea Sarzynski, 2012. "Bigger Is Not Always Better: A Comparative Analysis of Cities and their Air Pollution Impact," Urban Studies, Urban Studies Journal Limited, vol. 49(14), pages 3121-3138, November.
    42. Zhang, Chuanguo & Liu, Cong, 2015. "The impact of ICT industry on CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 12-19.
    43. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    44. Hamid Sepehrdoust & Saber Zamani, 2017. "The Challenge of Economic Growth and Environmental Protection in Developing Economies," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 21(4), pages 865-883, Autumn.
    45. Qingran Guo & Cuicui Ding & Tingting Guo & Shuaitao Liu, 2022. "Dynamic Effects and Regional Differences of Industrialization and Urbanization on China’s Energy Intensity under the Background of “Dual Carbon”," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    46. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    47. Muhammed Ashiq Villanthenkodath & Mohini Gupta & Seema Saini & Malayaranjan Sahoo, 2021. "Impact of Economic Structure on the Environmental Kuznets Curve (EKC) hypothesis in India," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-17, December.
    48. Wang, Zhaohua & Rasool, Yasir & Zhang, Bin & Ahmed, Zahoor & Wang, Bo, 2020. "Dynamic linkage among industrialisation, urbanisation, and CO2 emissions in APEC realms: Evidence based on DSUR estimation," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 382-389.
    49. Yanwen Sheng & Yi Miao & Jinping Song & Hongyan Shen, 2019. "The Moderating Effect of Innovation on the Relationship between Urbanization and CO 2 Emissions: Evidence from Three Major Urban Agglomerations in China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    50. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    51. Hua Liao & Huaishu Cao, 2012. "How does carbon dioxide emission change with the economic development? Statistical experiences from 132 countries," CEEP-BIT Working Papers 54, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    52. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    53. Shuai Liu & Fei Fan & Jianqing Zhang, 2019. "Are Small Cities More Environmentally Friendly? An Empirical Study from China," IJERPH, MDPI, vol. 16(5), pages 1-16, February.
    54. Chikaraishi, Makoto & Fujiwara, Akimasa & Kaneko, Shinji & Poumanyvong, Phetkeo & Komatsu, Satoru & Kalugin, Andrey, 2015. "The moderating effects of urbanization on carbon dioxide emissions: A latent class modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 302-317.
    55. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    56. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    57. Ekpeno L. Effiong, 2018. "On the urbanization-pollution nexus in Africa: a semiparametric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 445-456, January.
    58. Yu Sang Chang & Moon Jung Kim & Su Min Kim & Sung Jun Jo, 2023. "The Offsetting Impact of Dependency and Urbanization on Mean Years of Schooling: A Scaling Analysis of 97 Countries," SAGE Open, , vol. 13(2), pages 21582440231, April.
    59. Wang, Yuan & Li, Li & Kubota, Jumpei & Han, Rong & Zhu, Xiaodong & Lu, Genfa, 2016. "Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries," Applied Energy, Elsevier, vol. 168(C), pages 375-380.
    60. Fang, Jianchun & Gozgor, Giray & Mahalik, Mantu Kumar & Mallick, Hrushikesh & Padhan, Hemachandra, 2022. "Does urbanisation induce renewable energy consumption in emerging economies? The role of education in energy switching policies," Energy Economics, Elsevier, vol. 111(C).
    61. Keyong Zhang & Sulun Li & Peng Qin & Bohong Wang, 2022. "Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    62. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    63. Lan Song & Zhiji Huang, 2022. "Exploring the Effects of Industrial Land Transfer on Urban Air Quality Using a Geographically and Temporally Weighted Regression Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    64. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    65. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    66. Fotio, Hervé Kaffo & Adams, Samuel & Nkengfack, Hilaire & Poumie, Boker, 2023. "Achieving sustainable development goal 7 in Africa: Does globalization matter for electricity access, renewable energy consumption, and energy efficiency?," Utilities Policy, Elsevier, vol. 82(C).
    67. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    68. Zheng, Jiajia & Kamal, Muhammad Abdul, 2020. "The effect of household income on residential wastewater output: Evidence from urban China," Utilities Policy, Elsevier, vol. 63(C).
    69. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    70. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    71. Liu, Meihan & Baisheng, Shi & Alharthi, Majed & Hassan, Muhammad Shahid & Hanif, Imran, 2023. "The role of natural resources, clean energy and technology in mitigating carbon emissions in top populated countries," Resources Policy, Elsevier, vol. 83(C).
    72. Yannan Zhou & Jixia Huang & Mingxiang Huang & Yicheng Lin, 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia," IJERPH, MDPI, vol. 16(10), pages 1-14, May.
    73. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    74. Yang Ding & Qing Yang & Lanjuan Cao, 2021. "Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions," Energies, MDPI, vol. 14(21), pages 1-23, November.
    75. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M. & Sab, Che Normee Binti Che, 2013. "Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 107-112.
    76. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    77. Zhimin Zhou & Xinyue Ye & Xiangyu Ge, 2017. "The Impacts of Technical Progress on Sulfur Dioxide Kuznets Curve in China: A Spatial Panel Data Approach," Sustainability, MDPI, vol. 9(4), pages 1-27, April.
    78. Chuai, Xiaowei & Gao, Runyi & Huang, Xianjin & Lu, Qinli & Zhao, Rongqin, 2021. "The embodied flow of built-up land in China's interregional trade and its implications for regional carbon balance," Ecological Economics, Elsevier, vol. 184(C).
    79. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2021. "Investigating the nexus among transport, economic growth and environmental degradation: Evidence from panel ARDL approach," Transport Policy, Elsevier, vol. 109(C), pages 61-71.
    80. Cheng, Zhonghua & Wang, Lan, 2023. "Can new urbanization improve urban total-factor energy efficiency in China?," Energy, Elsevier, vol. 266(C).
    81. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    82. Petra Wächter, 2013. "The Impacts of Spatial Planning on Degrowth," Sustainability, MDPI, vol. 5(3), pages 1-13, March.
    83. Mounir Belloumi & Atef Saad Alshehry, 2016. "The Impact of Urbanization on Energy Intensity in Saudi Arabia," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    84. Keho, Yaya, 2016. "What drives energy consumption in developing countries? The experience of selected African countries," Energy Policy, Elsevier, vol. 91(C), pages 233-246.
    85. Yuanyuan Hao & Hong Chong Cho, 2022. "Research on the relationship between urban public infrastructure, CO2 emission and economic growth in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7361-7376, May.
    86. O' Mahony, Tadhg & Zhou, P. & Sweeney, John, 2013. "Integrated scenarios of energy-related CO2 emissions in Ireland: A multi-sectoral analysis to 2020," Ecological Economics, Elsevier, vol. 93(C), pages 385-397.
    87. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    88. Setareh Katircioglu, 2022. "Estimating the role of urban development in environment quality: Evidence from G7 countries," Energy & Environment, , vol. 33(2), pages 283-314, March.
    89. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    90. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    91. Hazrat YOUSAF* & Anwar HUSSAIN** & Samina KHALIL***, 2018. "Ecological Footprint, Environmental Intensity And Income Inequality," Pakistan Journal of Applied Economics, Applied Economics Research Centre, vol. 28(1), pages 19-31.
    92. Wang, Miao & Feng, Chao, 2020. "The impacts of technological gap and scale economy on the low-carbon development of China's industries: An extended decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    93. Lihui Zhang & Riletu Ge & Jianxue Chai, 2019. "Prediction of China’s Energy Consumption Based on Robust Principal Component Analysis and PSO-LSSVM Optimized by the Tabu Search Algorithm," Energies, MDPI, vol. 12(1), pages 1-19, January.
    94. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    95. Du, Zhili & Lin, Boqiang, 2019. "Changes in automobile energy consumption during urbanization: Evidence from 279 cities in China," Energy Policy, Elsevier, vol. 132(C), pages 309-317.
    96. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Jabran, Muhammad Ali, 2015. "How Urbanization Affects CO2 Emissions in Malaysia? The Application of STIRPAT Model," MPRA Paper 68422, University Library of Munich, Germany, revised 15 Dec 2015.
    97. Haitao Zheng & Jie Hu & Rong Guan & Shanshan Wang, 2016. "Examining Determinants of CO 2 Emissions in 73 Cities in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    98. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    99. Yaru Wang & Guitao Qiao & Mahmood Ahmad & Dan Yang, 2023. "Modeling the Impact of Fiscal Decentralization on Energy Poverty: Do Energy Efficiency and Technological Innovation Matter?," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
    100. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    101. Gudipudi, Ramana & Rybski, Diego & Lüdeke, Matthias K.B. & Zhou, Bin & Liu, Zhu & Kropp, Jürgen P., 2019. "The efficient, the intensive, and the productive: Insights from urban Kaya scaling," Applied Energy, Elsevier, vol. 236(C), pages 155-162.
    102. Acheampong, Alex O. & Opoku, Eric Evans Osei & Dzator, Janet, 2022. "Does democracy really improve environmental quality? Empirical contribution to the environmental politics debate," Energy Economics, Elsevier, vol. 109(C).
    103. Zhou, Yang & Liu, Yansui & Wu, Wenxiang & Li, Yurui, 2015. "Effects of rural–urban development transformation on energy consumption and CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 863-875.
    104. Ruixu Chen & Yang Chen & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Interplay of Urbanization and Ecological Environment: Coordinated Development and Drivers," Land, MDPI, vol. 12(7), pages 1-17, July.
    105. Wei Li & Yongqin Xi & Jiayang Lu & Feimei Wu & Pengfei Wu, 2019. "Interactive relationships between industrial, urban, agricultural, information, and green development," Energy & Environment, , vol. 30(6), pages 991-1009, September.
    106. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    107. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    108. Li, Wenxiang & Bao, Lei & Wang, Luqi & Li, Ye & Mai, Xianmin, 2019. "Comparative evaluation of global low-carbon urban transport," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 14-26.
    109. Yi-Bin Chiu & Wenwen Zhang, 2023. "Moderating Effect of Financial Development on the Relationship between Renewable Energy and Carbon Emissions," Energies, MDPI, vol. 16(3), pages 1-18, February.
    110. Wilmer Martínez-Rivera & Eliana R. González-Molano & Edgar Caicedo-García, 2023. "Forecasting Inflation from Disaggregated Data: The Colombian case," Borradores de Economia 1251, Banco de la Republica de Colombia.
    111. Poruschi, Lavinia & Ambrey, Christopher L., 2018. "Densification, what does it mean for fuel poverty and energy justice? An empirical analysis," Energy Policy, Elsevier, vol. 117(C), pages 208-217.
    112. Wu, Haitao & Hao, Yu & Weng, Jia-Hsi, 2019. "How does energy consumption affect China's urbanization? New evidence from dynamic threshold panel models," Energy Policy, Elsevier, vol. 127(C), pages 24-38.
    113. Mohamed El Hedi Arouri & Adel Ben Youssef & Hatem M'Henni & Christophe Rault, 2014. "Energy use and economic growth in Africa: a panel Granger-causality investigation," Economics Bulletin, AccessEcon, vol. 34(2), pages 1247-1258.
    114. Kassouri, Yacouba & Alola, Andrew Adewale, 2022. "Towards unlocking sustainable land consumption in sub-Saharan Africa: Analysing spatio-temporal variation of built-up land footprint and its determinants," Land Use Policy, Elsevier, vol. 120(C).
    115. Mrabet, Zouhair & Alsamara, Mouyad & Saleh, Ali Salman & Anwar, Sajid, 2019. "Urbanization and non-renewable energy demand: A comparison of developed and emerging countries," Energy, Elsevier, vol. 170(C), pages 832-839.
    116. Jorge Carrera & Pablo de la Vega, 2022. "The Effect of External Debt on Greenhouse Gas Emissions," Papers 2206.01840, arXiv.org, revised Apr 2024.
    117. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    118. Tarek Ghazouani, 2022. "The Effect of FDI Inflows, Urbanization, Industrialization, and Technological Innovation on CO2 Emissions: Evidence from Tunisia," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 3265-3295, December.
    119. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    120. Kizito Uyi Ehigiamusoe & Suresh Ramakrishnan & Hooi Hooi Lean & Sotheeswari Somasundram, 2023. "Role of Energy Consumption on the Environmental Impact of Sectoral Growth in Malaysia," SAGE Open, , vol. 13(3), pages 21582440231, July.
    121. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    122. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    123. Shijian Wu & Kaili Zhang, 2021. "Influence of Urbanization and Foreign Direct Investment on Carbon Emission Efficiency: Evidence from Urban Clusters in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    124. Ibrahim, Mansor H. & Law, Siong Hook, 2014. "Social capital and CO2 emission—output relations: A panel analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 528-534.
    125. Balsalobre-Lorente, Daniel & Ibáñez-Luzón, Lucia & Usman, Muhammad & Shahbaz, Muhammad, 2022. "The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries," Renewable Energy, Elsevier, vol. 185(C), pages 1441-1455.
    126. Ye, Chusheng & Ye, Qin & Shi, Xunpeng & Sun, Yongping, 2020. "Technology gap, global value chain and carbon intensity: Evidence from global manufacturing industries," Energy Policy, Elsevier, vol. 137(C).
    127. Acheampong, Alex O. & Amponsah, Mary & Boateng, Elliot, 2020. "Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies," Energy Economics, Elsevier, vol. 88(C).
    128. Mansor H. Ibrahim & Siong Hook Law, 2016. "Institutional Quality and CO 2 Emission–Trade Relations: Evidence from Sub-Saharan Africa," South African Journal of Economics, Economic Society of South Africa, vol. 84(2), pages 323-340, June.
    129. Ronald R. Kumar & Peter J. Stauvermann, 2019. "The Effects of a Revenue-Neutral Child Subsidy Tax Mechanism on Growth and GHG Emissions," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    130. Miguel Angel Esquivias & Owais ibni Hassan & Aisha Sheikh, 2023. "Evidence-based Examination of the Consequences of Financial Development on Environmental Degradation in the Indian Setting, Using the ARDL Model," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 281-290, January.
    131. Yituan Liu & Qihang Li & Zheng Zhang, 2022. "Do Smart Cities Restrict the Carbon Emission Intensity of Enterprises? Evidence from a Quasi-Natural Experiment in China," Energies, MDPI, vol. 15(15), pages 1-20, July.
    132. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    133. Hilaire Nkengfack & Hervé Kaffo Fotio & Armand Totouom, 2021. "How Does the Shadow Economy Affect Environmental Quality in Sub-Saharan Africa? Evidence from Heterogeneous Panel Estimations," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(4), pages 1635-1651, December.
    134. Azam, Muhammad & Khan, Abdul Qayyum & Zafeiriou, Eleni & Arabatzis, Garyfallos, 2016. "Socio-economic determinants of energy consumption: An empirical survey for Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1556-1567.
    135. Su, Min & Wang, Qiang & Li, Rongrong & Wang, Lili, 2022. "Per capita renewable energy consumption in 116 countries: The effects of urbanization, industrialization, GDP, aging, and trade openness," Energy, Elsevier, vol. 254(PB).
    136. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    137. Hu, Wei & Fan, Yuemin, 2020. "City size and energy conservation: Do large cities in China consume more energy?," Energy Economics, Elsevier, vol. 92(C).
    138. Doğan, Buhari & Ferraz, Diogo & Gupta, Monika & Duc Huynh, Toan Luu & Shahzadi, Irum, 2022. "Exploring the effects of import diversification on energy efficiency: Evidence from the OECD economies," Renewable Energy, Elsevier, vol. 189(C), pages 639-650.
    139. Aisha Kolawole & Sola Adesola & Glauco De Vita, 2017. "A Disaggregated Analysis of Energy Demand in Sub-Saharan Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 224-235.
    140. Liu, Yaobin & Xie, Yichun, 2013. "Asymmetric adjustment of the dynamic relationship between energy intensity and urbanization in China," Energy Economics, Elsevier, vol. 36(C), pages 43-54.
    141. Fatih Karanfil & Yuanjing Li, 2014. "Electricity consumption and economic growth: exploring panel‐specific differences," Working Papers 2014-337, Department of Research, Ipag Business School.
    142. Niu, Honglei & Lekse, William, 2018. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-31.
    143. Azam, Muhammad & Khan, Abdul Qayyum & Zaman, Khalid & Ahmad, Mehboob, 2015. "Factors determining energy consumption: Evidence from Indonesia, Malaysia and Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1123-1131.
    144. He, Xiaoping & Yu, Yuxuan & Jiang, Shuo, 2023. "City centrality, population density and energy efficiency," Energy Economics, Elsevier, vol. 117(C).
    145. Kwakwa, Paul Adjei, 2014. "Energy-growth nexus and energy demand in Ghana: A review of empirical studies," MPRA Paper 54971, University Library of Munich, Germany, revised 01 Apr 2014.
    146. Dong Cao & Lin Wang & Shouyang Wang, 2017. "Complex Dynamics Induced by Nonlinear Pollution Absorption, Pollution Emission Rate and Effectiveness of Abatement Technology in an OLG Model," Sustainability, MDPI, vol. 9(5), pages 1-11, May.
    147. Xue, Chaokai & Shahbaz, Muhammad & Ahmed, Zahoor & Ahmad, Mahmood & Sinha, Avik, 2021. "Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty?," MPRA Paper 110945, University Library of Munich, Germany, revised 2021.
    148. Rashid Latief & Usman Sattar & Sohail Ahmad Javeed & Ammar Ali Gull & Yingshun Pei, 2022. "The Environmental Effects of Urbanization, Education, and Green Innovation in the Union for Mediterranean Countries: Evidence from Quantile Regression Model," Energies, MDPI, vol. 15(15), pages 1-17, July.
    149. Feng, Weilun & Liu, Yansui & Qu, Lulu, 2019. "Effect of land-centered urbanization on rural development: A regional analysis in China," Land Use Policy, Elsevier, vol. 87(C).
    150. Zhang Chenghu & Muhammad Arif & Khurram Shehzad & Mahmood Ahmad & Judit Oláh, 2021. "Modeling the Dynamic Linkage between Tourism Development, Technological Innovation, Urbanization and Environmental Quality: Provincial Data Analysis of China," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
    151. Hongzhong Fan & Md Ismail Hossain, 2018. "Technological Innovation, Trade Openness, CO2 Emission and Economic Growth: Comparative Analysis between China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 240-257.
    152. Fatemeh Dehdar & Nuno Silva & José Alberto Fuinhas & Matheus Koengkan & Nazia Nazeer, 2022. "The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions," Energies, MDPI, vol. 15(22), pages 1-17, November.
    153. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    154. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    155. Robert J R Elliott & Puyang Sun & Tong Zhu, 2014. "Urbanization and Energy Intensity: A Province-level Study for China," Discussion Papers 14-05, Department of Economics, University of Birmingham.
    156. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    157. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    158. Jingqi Sun & Jing Shi & Boyang Shen & Shuqing Li & Yuwei Wang, 2018. "Nexus among Energy Consumption, Economic Growth, Urbanization and Carbon Emissions: Heterogeneous Panel Evidence Considering China’s Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    159. Zekai He & Xiuzhen Shi & Xinhao Wang & Yuwei Xu, 2017. "Urbanisation and the geographic concentration of industrial SO2 emissions in China," Urban Studies, Urban Studies Journal Limited, vol. 54(15), pages 3579-3596, November.
    160. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    161. Ali, Amjad & Sumaira, Sumaira & Siddique, Hafiz Muhammad Abubakar & Ashiq, Saima, 2023. "Impact of Economic Growth, Energy Consumption and Urbanization on Carbon Dioxide Emissions in the Kingdom of Saudi Arabia," MPRA Paper 118832, University Library of Munich, Germany.
    162. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    163. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2021. "Sustainability of Urbanization, Non-Agricultural Output and Air Pollution in the World’s Top 20 Polluting Countries," Data, MDPI, vol. 6(6), pages 1-16, June.
    164. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
    165. Maxwell Chukwudi Udeagha & Marthinus Christoffel Breitenbach, 2023. "Revisiting the nexus between fiscal decentralization and CO2 emissions in South Africa: fresh policy insights," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-46, December.
    166. Charfeddine, Lanouar, 2017. "The impact of energy consumption and economic development on Ecological Footprint and CO2 emissions: Evidence from a Markov Switching Equilibrium Correction Model," Energy Economics, Elsevier, vol. 65(C), pages 355-374.
    167. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    168. Jiang, Zhujun & Lin, Boqiang, 2012. "China's energy demand and its characteristics in the industrialization and urbanization process," Energy Policy, Elsevier, vol. 49(C), pages 608-615.
    169. Yung-Kuan Chan & Ming-Yuan Hsieh, 2022. "An Empirical Study on Higher Education C-ESG Sustainable Development Strategy in Lower-Birth-Rate Era," Sustainability, MDPI, vol. 14(19), pages 1-16, October.
    170. Naqvi, Syed Asif Ali & Hussain, Mehvish & Hussain, Bilal & Shah, Syed Ale Raza & Nazir, Jawad & Usman, Muhammad, 2023. "Environmental sustainability and biomass energy consumption through the lens of pollution Haven hypothesis and renewable energy-environmental kuznets curve," Renewable Energy, Elsevier, vol. 212(C), pages 621-631.
    171. Mingxing Chen & Hua Zhang & Weidong Liu & Wenzhong Zhang, 2014. "The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    172. Heng Luo & Ning Wang & Jianping Chen & Xiaoyan Ye & Yun-Fei Sun, 2015. "Study on the Thermal Effects and Air Quality Improvement of Green Roof," Sustainability, MDPI, vol. 7(3), pages 1-14, March.
    173. Rafiq, Shuddhasattwa & Salim, Ruhul & Apergis, Nicholas, 2016. "Agriculture, trade openness and emissions: an empirical analysis and policy options," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(2), April.
    174. Liu, Ningyin & Zhang, Yan & Fath, Brian D., 2021. "The material metabolism characteristics and growth patterns of the central cities of China's Beijing-Tianjin-Hebei region," Ecological Modelling, Elsevier, vol. 448(C).
    175. Chen, Victor L. & Delmas, Magali A. & Locke, Stephen L. & Singh, Amarjeet, 2017. "Information strategies for energy conservation: A field experiment in India," Energy Economics, Elsevier, vol. 68(C), pages 215-227.
    176. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    177. Guimei Wang & Muhammad Salman, 2023. "The impacts of heterogeneous environmental regulations on green economic efficiency from the perspective of urbanization: a dynamic threshold analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9485-9516, September.
    178. Yugang He, 2022. "Investigating the Routes toward Environmental Sustainability: Fresh Insights from Korea," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    179. Hashemizadeh, Ali & Bui, Quocviet & Kongbuamai, Nattapan, 2021. "Unpacking the role of public debt in renewable energy consumption: New insights from the emerging countries," Energy, Elsevier, vol. 224(C).
    180. Xu, Jiajun & Wang, Jinchao & Li, Rui & Yang, Xiaojun, 2023. "Spatio-temporal effects of urbanization on CO2 emissions: Evidences from 268 Chinese cities," Energy Policy, Elsevier, vol. 177(C).
    181. Qichang Xie & Yingkun Yan & Xu Wang, 2023. "Assessing the role of foreign direct investment in environmental sustainability: a spatial semiparametric panel approach," Economic Change and Restructuring, Springer, vol. 56(2), pages 1263-1295, April.
    182. Sallahuddin Hassan, 2018. "Long Run Energy Demand and Its Determinants: A Panel Cointegration Analysis of the Association of Southeast Asian Nations-5," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 270-279.
    183. Fatih Karanfil & Luc-Désiré Omgba, 2018. "Do the IMF’s structural adjustment programs help reduce energy consumption and carbon intensity? Evidence from developing countries," Post-Print hal-01946565, HAL.
    184. Nicolae Stef & Sami Ben Jabeur, 2020. "Climate Change Legislations and Environmental Degradation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 839-868, December.
    185. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    186. Gritli, Mohamed Ilyes & Charfi, Fatma Marrakchi, 2023. "The determinants of oil consumption in Tunisia: Fresh evidence from NARDL approach and asymmetric causality test," Energy, Elsevier, vol. 284(C).
    187. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    188. Zhu, Hui-Ming & You, Wan-Hai & Zeng, Zhao-fa, 2012. "Urbanization and CO2 emissions: A semi-parametric panel data analysis," Economics Letters, Elsevier, vol. 117(3), pages 848-850.
    189. Danish & Bin Zhang & Zhaohua Wang & Bo Wang, 2018. "Energy production, economic growth and CO2 emission: evidence from Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 27-50, January.
    190. Chi-Hui Wang & Prasad Padmanabhan & Chia-Hsing Huang, 2021. "The Impact of Renewable Energy, Urbanization, and Environmental Sustainability Ratings on the Environmental Kuznets Curve and the Pollution Haven Hypothesis," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    191. Disli, Mustafa & Ng, Adam & Askari, Hossein, 2016. "Culture, income, and CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 418-428.
    192. Wei Zhang & Jing Cheng & Xuemeng Liu & Zhangrong Zhu, 2023. "Heterogeneous industrial agglomeration, its coordinated development and total factor energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5511-5537, June.
    193. Xia, Linlin & Zhang, Yan & Sun, Xiaoxi & Li, Jinjian, 2017. "Analyzing the spatial pattern of carbon metabolism and its response to change of urban form," Ecological Modelling, Elsevier, vol. 355(C), pages 105-115.
    194. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    195. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    196. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    197. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    198. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    199. Pan, Xiongfeng & Li, Mengna & Wang, Mengyang & Chu, Junhui & Bo, Hongguang, 2020. "The effects of outward foreign direct investment and reverse technology spillover on China's carbon productivity," Energy Policy, Elsevier, vol. 145(C).
    200. Shoufu Lin & Ji Sun & Dora Marinova & Dingtao Zhao, 2017. "Effects of Population and Land Urbanization on China’s Environmental Impact: Empirical Analysis Based on the Extended STIRPAT Model," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    201. Faisal Faisal & Ruqiya Pervaiz & Nesrin Ozatac & Turgut Tursoy, 2021. "Exploring the relationship between carbon dioxide emissions, urbanisation and financial deepening for Turkey using the symmetric and asymmetric causality approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17374-17402, December.
    202. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    203. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.
    204. Shahbaz, Muhammad & Loganathan, Nanthakumar & Sbia, Rashid & Afza, Talat, 2015. "The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 683-693.
    205. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    206. Davide Quaglione & Dario D’Ingiullo & Linda Meleo, 2023. "Fixed and mobile broadband penetration and CO2 emissions: evidence from OECD countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 40(3), pages 795-816, October.
    207. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    208. Senzele, Joseph, 2022. "Croissance économique et dégradation de l’environnement en Côte d’Ivoire : application du modèle stirpat [Economic growth and environmental degradation in Cote d'ivoire : stirpat model implementati," MPRA Paper 114754, University Library of Munich, Germany, revised 24 Sep 2022.
    209. Wang, Hongsheng & Wang, Yunxia & Wang, Haikun & Liu, Miaomiao & Zhang, Yanxia & Zhang, Rongrong & Yang, Jie & Bi, Jun, 2014. "Mitigating greenhouse gas emissions from China's cities: Case study of Suzhou," Energy Policy, Elsevier, vol. 68(C), pages 482-489.
    210. Lili Sun & Hang Yu & Qiang Liu & Yanzun Li & Lintao Li & Hua Dong & Caspar Daniel Adenutsi, 2022. "Identifying the Key Driving Factors of Carbon Emissions in ‘Belt and Road Initiative’ Countries," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    211. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    212. Petrović, Predrag & Lobanov, Mikhail M., 2022. "Energy intensity and foreign direct investment nexus: Advanced panel data analysis," Applied Energy, Elsevier, vol. 311(C).
    213. Cheol Hee Son & Jong In Baek & Yong Un Ban, 2018. "Structural Impact Relationships Between Urban Development Intensity Characteristics and Carbon Dioxide Emissions in Korea," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    214. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    215. Mouhamadou Lamine DIAL, 2022. "Les effets de l’urbanisation et de l’industrialisation sur l’intensité énergétique dans la CEDEAO," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 56, pages 41-59.
    216. Komal, Rabia & Abbas, Faisal, 2015. "Linking financial development, economic growth and energy consumption in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 211-220.
    217. Llanos, Cristian & Kristjanpoller, Werner & Michell, Kevin & Minutolo, Marcel C., 2022. "Causal treatment effects in time series: CO2 emissions and energy consumption effect on GDP," Energy, Elsevier, vol. 249(C).
    218. Alexandra-Anca Purcel, 2019. "Does Political Stability Hinder Pollution? Evidence From Developing States," Economic Research Guardian, Weissberg Publishing, vol. 9(2), pages 75-98, December.
    219. Adom, Philip Kofi & Amuakwa-Mensah, Franklin, 2016. "What drives the energy saving role of FDI and industrialization in East Africa?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 925-942.
    220. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuloğlu, Ayhan, 2017. "The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity," Energy, Elsevier, vol. 133(C), pages 242-256.
    221. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    222. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    223. Georgina Mace & Emma Terama & Tim Coulson, 2013. "Perspectives on International Trends and Dynamics in Population and Consumption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(4), pages 555-568, August.
    224. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    225. KPEMOUA, Palakiyem, 2016. "Analyse Du Lien Entre Les Emissions De Co2, Leur Restriction Et La Croissance Economique Du Togo [Analysis Of The Nexus Between Co2 Emission, Their Restriction And Economic Growth Of Togo]," MPRA Paper 77624, University Library of Munich, Germany, revised 10 Oct 2016.
    226. Alam & Paramati, 2015. "Do oil consumption and economic growth intensify environmental degradation? Evidence from developing economies," Applied Economics, Taylor & Francis Journals, vol. 47(48), pages 5186-5203, October.
    227. Khalid Khan & Chi-Wei Su & Ran Tao & Lin-Na Hao, 2020. "Urbanization and carbon emission: causality evidence from the new industrialized economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7193-7213, December.
    228. Lira P. Sekantsi & Sayed Timuno, 2017. "Electricity Consumption In Botswana: The Role Of Financial Development, Industrialisation And Urbanization," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 19, pages 75-102, June.
    229. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    230. Radosław Miśkiewicz, 2020. "Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits," Energies, MDPI, vol. 13(22), pages 1-15, November.
    231. Liu, Qingrui & Tang, Lu, 2022. "Research on the accelerating effect of green finance on the transformation of energy consumption in China," Research in International Business and Finance, Elsevier, vol. 63(C).
    232. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
    233. Xianjin Lin & Xiaoyan Lin & Jun Zhang & Qionge He & Pengyu Yan, 2022. "Simulation Analysis of Factors Affecting Energy Carbon Emissions in Fujian Province," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
    234. Simplice A. Asongu & Cheikh T. Ndour & Judith C. M. Ngoungou, 2023. "The effects of gender political inclusion and democracy on environmental performance: evidence from the method of moments by quantile regression," Working Papers 23/060, European Xtramile Centre of African Studies (EXCAS).
    235. Mihail Busu, 2019. "The Role of Renewables in a Low-Carbon Society: Evidence from a Multivariate Panel Data Analysis at the EU Level," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    236. Ferenc Bakó & Judit Berkes & Cecília Szigeti, 2021. "Households’ Electricity Consumption in Hungarian Urban Areas," Energies, MDPI, vol. 14(10), pages 1-23, May.
    237. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    238. Rahman, Mohammad Mafizur & Vu, Xuan-Binh, 2020. "The nexus between renewable energy, economic growth, trade, urbanisation and environmental quality: A comparative study for Australia and Canada," Renewable Energy, Elsevier, vol. 155(C), pages 617-627.
    239. Du, W.C. & Xia, X.H., 2018. "How does urbanization affect GHG emissions? A cross-country panel threshold data analysis," Applied Energy, Elsevier, vol. 229(C), pages 872-883.
    240. Ramlall, Indranarain, 2017. "Internalizing CO2 emissions via central banks’ financials: Evidence from the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 549-559.
    241. Muhammad Saeed Meo & Solomon Prince Nathaniel & Muhammad Murtaza Khan & Qasim Ali Nisar & Tehreem Fatima, 2023. "Does Temperature Contribute to Environment Degradation? Pakistani Experience Based on Nonlinear Bounds Testing Approach," Global Business Review, International Management Institute, vol. 24(3), pages 535-549, June.
    242. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    243. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    244. Siraprapa Panthong & Viriya Taecharungroj, 2021. "Which CSR Activities Are Preferred by Local Community Residents? Conjoint and Cluster Analyses," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    245. Carlos Aller & Lorenzo Ductor & Daryna Grechyna, 2020. "Robust Determinants of CO2 Emissions," ThE Papers 20/13, Department of Economic Theory and Economic History of the University of Granada..
    246. Cerdeira Bento, João Paulo, 2014. "The determinants of CO2 emissions: empirical evidence from Italy," MPRA Paper 59166, University Library of Munich, Germany.
    247. Viktoriia Brazovskaia & Svetlana Gutman & Andrey Zaytsev, 2021. "Potential Impact of Renewable Energy on the Sustainable Development of Russian Arctic Territories," Energies, MDPI, vol. 14(12), pages 1-19, June.
    248. Olaronke T. ONANUGA, 2017. "Elasticity of CO2 emissions with Respect to Income, Population, and Energy Use: Time Series Evidence from African Countries," Economic Alternatives, University of National and World Economy, Sofia, Bulgaria, issue 4, pages 651-670, December.
    249. WenShwo Fang & Stephen M. Miller, 2012. "The effect of ESCOs on carbon dioxide emissions," Working papers 2012-14, University of Connecticut, Department of Economics.
    250. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    251. Dong, Qichen & Lin, Yongyi & Huang, Jieyu & Chen, Zhongfei, 2020. "Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data," China Economic Review, Elsevier, vol. 59(C).
    252. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    253. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    254. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    255. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2018. "Do countries influence neighbouring pollution? A spatial analysis of the EKC for CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 266-279.
    256. Nicolae Stef & Sami Ben Jabeur, 2023. "Elections and Environmental Quality," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(2), pages 593-625, February.
    257. Zheng, Wei & Walsh, Patrick Paul, 2019. "Economic growth, urbanization and energy consumption — A provincial level analysis of China," Energy Economics, Elsevier, vol. 80(C), pages 153-162.
    258. Shahbaz, Muhammad & Sbia, Rashid & Hamdi, Helmi, 2013. "The Environmental cost of Skiing in the Desert? Evidence from Cointegration with unknown Structural breaks in UAE," MPRA Paper 48007, University Library of Munich, Germany, revised 03 Jul 2013.
    259. Purushothaman Paneerselvam & Gnanamoorthi Venkadesan & Mebin Samuel Panithasan & Gurusamy Alaganathan & Sławomir Wierzbicki & Maciej Mikulski, 2021. "Evaluating the Influence of Cetane Improver Additives on the Outcomes of a Diesel Engine Characteristics Fueled with Peppermint Oil Diesel Blend," Energies, MDPI, vol. 14(10), pages 1-15, May.
    260. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    261. Karishma Asarpota & Vincent Nadin, 2020. "Energy Strategies, the Urban Dimension, and Spatial Planning," Energies, MDPI, vol. 13(14), pages 1-25, July.
    262. Husna Purnama & Toto Gunarto & Ida Budiarty, 2020. "Effects of Energy Consumption, Economic Growth and Urbanization on Indonesian Environmental Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 580-587.
    263. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    264. Yuan, Xiao-Chen & Sun, Xun & Zhao, Weigang & Mi, Zhifu & Wang, Bing & Wei, Yi-Ming, 2017. "Forecasting China’s regional energy demand by 2030: A Bayesian approach," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 85-95.
    265. Rasool, Samma Faiz & Zaman, Shah & Jehan, Noor & Chin, Tachia & Khan, Saleem & Zaman, Qamar uz, 2022. "Investigating the role of the tech industry, renewable energy, and urbanization in sustainable environment: Policy directions in the context of developing economies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    266. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    267. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    268. Ihtisham ul Haq & Bakhitbay Embergenov & Piratdin Allayarov, 2022. "Nexus between Sources of Electricity Production and Environmental Degradation in Context of EKC Hypothesis: A Time Series Study for Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 436-443.
    269. Hussain Ali Bekhet & Nor Salwati Othman & Tahira Yasmin, 2020. "Interaction Between Environmental Kuznet Curve and Urban Environment Transition Hypotheses in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 384-402.
    270. Petrović, Predrag & Filipović, Sanja & Radovanović, Mirjana, 2018. "Underlying causal factors of the European Union energy intensity: Econometric evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 216-227.
    271. Shanshan Guo & Yanfang Zhang & Xiangyan Qian & Zhang Ming & Rui Nie, 2019. "Urbanization and CO2 emissions in resource-exhausted cities: evidence from Xuzhou city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 807-826, November.
    272. Yongjiao Wu & Huazhu Zheng & Yu Li & Claudio O. Delang & Jiao Qian, 2021. "Carbon Productivity and Mitigation: Evidence from Industrial Development and Urbanization in the Central and Western Regions of China," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    273. Pengfei Sheng & Yaping He & Xiaohui Guo, 2017. "The impact of urbanization on energy consumption and efficiency," Energy & Environment, , vol. 28(7), pages 673-686, November.
    274. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    275. Amuakwa-Mensah, Franklin & Klege, Rebecca A. & Adom, Philip K. & Amoah, Anthony & Hagan, Edmond, 2018. "Unveiling the energy saving role of banking performance in Sub-Sahara Africa," Energy Economics, Elsevier, vol. 74(C), pages 828-842.
    276. Wang, Yuan & Han, Rong & Kubota, Jumpei, 2016. "Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric panel data analysis for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1182-1188.
    277. Xueting Jin & Yu Li & Dongqi Sun & Jinzhou Zhang & Ji Zheng, 2019. "Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    278. Acheampong, Alex O., 2022. "The impact of de facto globalization on carbon emissions: Evidence from Ghana," International Economics, Elsevier, vol. 170(C), pages 156-173.
    279. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    280. Liu, Xuyi & Kong, Hao & Zhang, Shun, 2021. "Can urbanization, renewable energy, and economic growth make environment more eco-friendly in Northeast Asia?," Renewable Energy, Elsevier, vol. 169(C), pages 23-33.
    281. Wei Zheng & Patrick Paul Walsh, 2018. "Economic growth, urbanization and energy consumption," Working Papers 201817, Geary Institute, University College Dublin.
    282. Yunlong Liu & Xianlin Chang & Chengfeng Huang, 2022. "Research and Analysis on the Influencing Factors of China’s Carbon Emissions Based on a Panel Quantile Model," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    283. Yabo Zhao & Ruiyang Chen & Tong Sun & Ying Yang & Shifa Ma & Dixiang Xie & Xiwen Zhang & Yunnan Cai, 2022. "Urbanization Influences CO 2 Emissions in the Pearl River Delta: A Perspective of the “Space of Flows”," Land, MDPI, vol. 11(8), pages 1-21, August.
    284. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    285. Sheng, Pengfei & Li, Jun & Zhai, Mengxin & Huang, Shoujun, 2020. "Coupling of economic growth and reduction in carbon emissions at the efficiency level: Evidence from China," Energy, Elsevier, vol. 213(C).
    286. Avenyo, Elvis Korku & Tregenna, Fiona, 2022. "Greening manufacturing: Technology intensity and carbon dioxide emissions in developing countries," Applied Energy, Elsevier, vol. 324(C).
    287. Wang, Qiang & Zhang, Fuyu, 2021. "Free trade and renewable energy: A cross-income levels empirical investigation using two trade openness measures," Renewable Energy, Elsevier, vol. 168(C), pages 1027-1039.
    288. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2022. "Institutional quality and its spatial spillover effects on energy efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    289. Mingyuan Guo & Shaoli Chen & Yu Zhang, 2022. "Spatial Analysis on the Role of Multi-Dimensional Urbanizations in Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    290. Petra Wächter & Michael Ornetzeder & Harald Rohracher & Anna Schreuer & Markus Knoflacher, 2012. "Towards a Sustainable Spatial Organization of the Energy System: Backcasting Experiences from Austria," Sustainability, MDPI, vol. 4(2), pages 1-17, February.
    291. Sohail Farooq & Shabana Parveen & Habib Elahi Sahibzada, 2019. "Impact of Industrialization, Urbanization and Energy Consumption on Environmental Degradation: Evidence from India," Global Economics Review, Humanity Only, vol. 4(2), pages 1-12, June.
    292. Hashemizadeh, Ali & Bui, Quocviet & Zaidi, Syed Anees Haider, 2022. "A blend of renewable and nonrenewable energy consumption in G-7 countries: The role of disaggregate energy in human development," Energy, Elsevier, vol. 241(C).
    293. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    294. Adom, Philip Kofi, 2015. "Asymmetric impacts of the determinants of energy intensity in Nigeria," Energy Economics, Elsevier, vol. 49(C), pages 570-580.
    295. Bo Li & Xuejing Liu & Zhenhong Li, 2015. "Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1667-1685, April.
    296. Yang, Xuechun & Lou, Feng & Sun, Mingxing & Wang, Renqing & Wang, Yutao, 2017. "Study of the relationship between greenhouse gas emissions and the economic growth of Russia based on the Environmental Kuznets Curve," Applied Energy, Elsevier, vol. 193(C), pages 162-173.
    297. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    298. Phetkeo Poumanyvong & Shinji Kaneko & Shobhakar Dhakal, 2012. "Impacts of urbanization on national residential energy use and CO2 emissions: Evidence from low-, middle- and high-income countries," IDEC DP2 Series 2-5, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    299. Sheng, Pengfei & Guo, Xiaohui, 2016. "The Long-run and Short-run Impacts of Urbanization on Carbon Dioxide Emissions," Economic Modelling, Elsevier, vol. 53(C), pages 208-215.
    300. Ashouri, Mohammad Javad & Rafei, Meysam, 2021. "How do energy productivity and water resources affect air pollution in Iran? New evidence from a Markov Switching perspective," Resources Policy, Elsevier, vol. 71(C).
    301. Asane-Otoo, Emmanuel, 2015. "Carbon footprint and emission determinants in Africa," Energy, Elsevier, vol. 82(C), pages 426-435.
    302. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    303. Lee, Chien-Chiang & Zhao, Ya-Nan, 2023. "Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    304. Predrag Petrović & Mikhail M. Lobanov, 2022. "Impact of financial development on CO2 emissions: improved empirical results," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6655-6675, May.
    305. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    306. Kemal Eyyüboğlu & Saffet Akdağ & Hakan Yildirim & Andrew Adewale Alola, 2022. "The causal trend of energy intensity and urbanization in emerging countries," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 653-663, December.
    307. Liu, Yaobin, 2014. "Is the natural resource production a blessing or curse for China's urbanization? Evidence from a space–time panel data model," Economic Modelling, Elsevier, vol. 38(C), pages 404-416.
    308. Axel Franzen & Sebastian Mader, 2016. "Predictors of national CO2 emissions: do international commitments matter?," Climatic Change, Springer, vol. 139(3), pages 491-502, December.
    309. Xiaoyun Zhao & Kenneth Carling & Johan Håkansson, 2017. "Residential planning, driver mobility and CO emission: a microscopic look at Borlänge in Sweden," European Planning Studies, Taylor & Francis Journals, vol. 25(9), pages 1597-1614, September.
    310. Alexandra-Anca Purcel, 2020. "Developing states and the green challenge. A dynamic approach," Post-Print hal-03182341, HAL.
    311. Maxwell Kongkuah & Hongxing Yao & Veli Yilanci, 2022. "The relationship between energy consumption, economic growth, and CO2 emissions in China: the role of urbanisation and international trade," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4684-4708, April.
    312. Ha-Chi Le & Thai-Ha Le, 2023. "Effects of economic, social, and political globalization on environmental quality: international evidence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4269-4299, May.
    313. Ponle Henry Kareem & Mumtaz Ali & Turgut Tursoy & Wagdi Khalifa, 2023. "Testing the Effect of Oil Prices, Ecological Footprint, Banking Sector Development and Economic Growth on Energy Consumptions: Evidence from Bootstrap ARDL Approach," Energies, MDPI, vol. 16(8), pages 1-19, April.
    314. Chun-Ping Chang & Minyi Dong & Jiliang Liu, 2019. "Environmental Governance and Environmental Performance," Working Papers id:13023, eSocialSciences.
    315. Xintong Zhang & Cuijie Lu & Yuncai Ning & Jingtao Wang, 2022. "Spatiotemporal Coupling Effect of Regional Economic Development and De-Carbonisation of Energy Use in China: Empirical Analysis Based on Panel and Spatial Durbin Models," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    316. Rafique, Muhammad Zahid & Fareed, Zeeshan & Ferraz, Diogo & Ikram, Majid & Huang, Shaoan, 2022. "Exploring the heterogenous impacts of environmental taxes on environmental footprints: An empirical assessment from developed economies," Energy, Elsevier, vol. 238(PA).
    317. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    318. Jorge A. Acevedo-Ramos & Carlos F. Valencia & Carlos D. Valencia, 2023. "The Environmental Kuznets Curve Hypothesis for Colombia: Impact of Economic Development on Greenhouse Gas Emissions and Ecological Footprint," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    319. Niu, Shuwen & Zhang, Xin & Zhao, Chunsheng & Niu, Yunzhu, 2012. "Variations in energy consumption and survival status between rural and urban households: A case study of the Western Loess Plateau, China," Energy Policy, Elsevier, vol. 49(C), pages 515-527.
    320. Wang, Zhaohua & Danish, & Zhang, Bin & Wang, Bo, 2018. "The moderating role of corruption between economic growth and CO2 emissions: Evidence from BRICS economies," Energy, Elsevier, vol. 148(C), pages 506-513.
    321. Donglan Zha & Pan Liu & Hui Shi, 2022. "Does population aging aggravate air pollution in China?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-14, February.
    322. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    323. Adom, Philip K. & Kwakwa, Paul Adjei, 2014. "Effects of changing trade structure and technical characteristics of the manufacturing sector on energy intensity in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 475-483.
    324. Andrew Jorgenson & Daniel Auerbach & Brett Clark, 2014. "The (De-) carbonization of urbanization, 1960–2010," Climatic Change, Springer, vol. 127(3), pages 561-575, December.
    325. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    326. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    327. Sinha, Avik & Rastogi, Siddhartha K., 2017. "Collaboration between Central and State Government and Environmental Quality: Evidences from Indian Cities," MPRA Paper 100012, University Library of Munich, Germany.
    328. Bingjie Xu & Ruoyu Zhong & Hui Qiao, 2020. "The impact of biofuel consumption on CO2 emissions: A panel data analysis for seven selected G20 countries," Energy & Environment, , vol. 31(8), pages 1498-1514, December.
    329. Abdimalik Ali Warsame, 2022. "The Impact of Urbanization on Energy Demand: An Empirical Evidence from Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 383-389.
    330. Meng Xu & Zhongfeng Qin & Yigang Wei, 2023. "Exploring the financing and allocating schemes for the Chinese Green Climate Fund," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2487-2508, March.
    331. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    332. Adams, Samuel & Klobodu, Edem Kwame Mensah, 2017. "Urbanization, democracy, bureaucratic quality, and environmental degradation," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1035-1051.
    333. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).
    334. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.
    335. Chen Li & Heng Li & Xionghe Qin, 2022. "Spatial Heterogeneity of Carbon Emissions and Its Influencing Factors in China: Evidence from 286 Prefecture-Level Cities," IJERPH, MDPI, vol. 19(3), pages 1-29, January.
    336. Yonglian Chang & Yingjun Huang & Manman Li & Zhengmin Duan, 2021. "Threshold Effect in the Relationship between Environmental Regulations and Haze Pollution: Empirical Evidence from PSTR Estimation," IJERPH, MDPI, vol. 18(23), pages 1-19, November.
    337. Adom, Philip Kofi & Adams, Samuel, 2018. "Energy savings in Nigeria. Is there a way of escape from energy inefficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2421-2430.
    338. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    339. Shahbaz, Muhammad & Sharma, Rajesh & Sinha, Avik & Jiao, Zhilun, 2021. "Analyzing nonlinear impact of economic growth drivers on CO2 emissions: Designing an SDG framework for India," Energy Policy, Elsevier, vol. 148(PB).
    340. Perry Sadorsky, 2014. "The Effect of Urbanization and Industrialization on Energy Use in Emerging Economies: Implications for Sustainable Development," American Journal of Economics and Sociology, Wiley Blackwell, vol. 73(2), pages 392-409, April.
    341. Zhibo Zhao & Tian Yuan & Xunpeng Shi & Lingdi Zhao, 2020. "Heterogeneity in the relationship between carbon emission performance and urbanization: evidence from China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1363-1380, October.
    342. Xuanting Li & Xiaohong Wang & Shaopeng Zhang, 2022. "Impacts of Urban Spatial Development Patterns on Carbon Emissions: Evidence from Chinese Cities," Land, MDPI, vol. 11(11), pages 1-16, November.
    343. Fátima L. Benítez & Carlos F. Mena & Leo Zurita-Arthos, 2018. "Urban Land Cover Change in Ecologically Fragile Environments: The Case of the Galapagos Islands," Land, MDPI, vol. 7(1), pages 1-19, February.
    344. Mohd Irfan & Muhammad Shahbaz, 2022. "Low-carbon energy strategies and financial development in developing economies: investigating long-run influence of credit and equity market development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-26, April.
    345. Feng, Yidai & Yuan, Huaxi & Liu, Yaobin & Zhang, Shaohui, 2023. "Does new-type urbanization policy promote green energy efficiency? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 124(C).
    346. Yingyi Wang & Md. Qamruzzaman & Ayesha Serfraz & Manickavasagam Theivanayaki, 2023. "Does Financial Deepening Foster Clean Energy Sustainability over Conventional Ones? Examining the Nexus between Financial Deepening, Urbanization, Institutional Quality, and Energy Consumption in Chin," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    347. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO 2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    348. Long, X. & Ji, Xi & Ulgiati, S., 2017. "Is urbanization eco-friendly? An energy and land use cross-country analysis," Energy Policy, Elsevier, vol. 100(C), pages 387-396.
    349. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    350. P. V. Druzhinin & A. P. Shcherbak & S. V. Tishkov, 2018. "Modeling the Interdependence of the Economy and Power Industry Based on Multiplicative Two-Factor Functions," Studies on Russian Economic Development, Springer, vol. 29(3), pages 280-287, May.
    351. Mahumane, Gilberto & Mulder, Peter, 2022. "Urbanization of energy poverty? The case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    352. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    353. Pingxing Li & Wei Sun, 2018. "Temporal Evolution and Influencing Factors of Energy Consumption and Related Carbon Emissions from the Perspective of Industrialization and Urbanization in Shanghai, China," Sustainability, MDPI, vol. 10(9), pages 1-13, August.
    354. Chang, Chun-Ping & Dong, Minyi & Sui, Bo & Chu, Yin, 2019. "Driving forces of global carbon emissions: From time- and spatial-dynamic perspectives," Economic Modelling, Elsevier, vol. 77(C), pages 70-80.
    355. Feng, Yidai & Yuan, Huaxi & Liu, Yaobin, 2023. "The energy-saving effect in the new transformation of urbanization," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 41-59.
    356. Behera, Smruti Ranjan & Dash, Devi Prasad, 2017. "The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 96-106.
    357. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    358. Sheng, Pengfei & Guo, Xiaohui, 2018. "Energy consumption associated with urbanization in China: Efficient- and inefficient-use," Energy, Elsevier, vol. 165(PB), pages 118-125.
    359. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    360. Effiong, Ekpeno, 2016. "Urbanization and Environmental Quality in Africa," MPRA Paper 73224, University Library of Munich, Germany.
    361. Paul-Razvan Șerban & Monica Dumitrașcu & Bianca Mitrică & Ines Grigorescu & Irena Mocanu & Gheorghe Kucsicsa & Alexandra Vrînceanu & Cristina Dumitrică, 2020. "The Estimation of Regional Energy Consumption Based on the Energy Consumption Rate at National Level. Case Study: The Romanian Danube Valley," Energies, MDPI, vol. 13(16), pages 1-18, August.
    362. Zhimin Zhou, 2019. "The Underground Economy and Carbon Dioxide (CO 2 ) Emissions in China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    363. Awan, Ashar & Abbasi, Kashif Raza & Rej, Soumen & Bandyopadhyay, Arunava & Lv, Kangjuan, 2022. "The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile analysis," Renewable Energy, Elsevier, vol. 189(C), pages 454-466.
    364. You, Wan-Hai & Zhu, Hui-Ming & Yu, Keming & Peng, Cheng, 2015. "Democracy, Financial Openness, and Global Carbon Dioxide Emissions: Heterogeneity Across Existing Emission Levels," World Development, Elsevier, vol. 66(C), pages 189-207.
    365. Rehermann, F. & Pablo-Romero, M., 2018. "Economic growth and transport energy consumption in the Latin American and Caribbean countries," Energy Policy, Elsevier, vol. 122(C), pages 518-527.
    366. Taştan, Hüseyin & Yıldız, Hakan, 2023. "Club convergence analysis of city-level electricity consumption in Turkey," Energy, Elsevier, vol. 265(C).
    367. Juan David Alonso-Sanabria & Luis Fernando Melo-Velandia & Daniel Parra-Amado, 2023. "Connecting the Dots: Renewable Energy, Economic Growth, Reforestation, and Greenhouse Gas Emissions in Colombia," Borradores de Economia 1252, Banco de la Republica de Colombia.
    368. Michieka, Nyakundi M. & Fletcher, Jerald J., 2012. "An investigation of the role of China's urban population on coal consumption," Energy Policy, Elsevier, vol. 48(C), pages 668-676.
    369. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    370. Hussain, Jamal & Khan, Anwar & Zhou, Kui, 2020. "The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: A cross-country analysis," Energy, Elsevier, vol. 199(C).
    371. Johan-Andrés Vélez-Henao, 2020. "Does urbanization boost environmental impacts in Colombia? An extended STIRPAT–LCA approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 851-866, June.

  23. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.

    Cited by:

    1. Yongrok Choi & Hyoung Seok Lee, 2016. "Are Emissions Trading Policies Sustainable? A Study of the Petrochemical Industry in Korea," Sustainability, MDPI, vol. 8(11), pages 1-13, October.
    2. Sugathan, Anish & Bhangale, Ritesh & Kansal, Vishal & Hulke, Unmil, 2018. "How can Indian power plants cost-effectively meet the new sulfur emission standards? Policy evaluation using marginal abatement cost-curves," Energy Policy, Elsevier, vol. 121(C), pages 124-137.
    3. Yunfei An & Xunpeng Shi & Qunwei Wang & Jian Yu & Dequn Zhou & Xiaoyong Zhou, 2023. "China's manufacturing firms' willingness to pay for carbon abatement: A cost perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5477-5486, December.
    4. Peihao Lai & Minzhe Du & Bing Wang & Ziyue Chen, 2016. "Assessment and Decomposition of Total Factor Energy Efficiency: An Evidence Based on Energy Shadow Price in China," Sustainability, MDPI, vol. 8(5), pages 1-23, April.
    5. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    6. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    7. Nakaishi, Tomoaki & Nagashima, Fumiya & Kagawa, Shigemi & Nansai, Keisuke & Chatani, Satoru, 2023. "Quantifying the health benefits of improving environmental efficiency: A case study from coal power plants in China," Energy Economics, Elsevier, vol. 121(C).
    8. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    9. Zhigang Zhu & Xuping Zhang & Yujia Wang & Xiang Chen, 2021. "Energy Cost Performance of Thermal Power Industry in China Considering Regional Heterogeneity: A Meta-Frontier Cost Malmquist Productivity Decomposition Approach," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    10. Nazar, Roshna & Srinivasan, Shweta L. & Kanudia, Amit & Asundi, Jai, 2021. "Implication of emission regulation on cost and tariffs of coal-based power plants in India: A system modelling approach," Energy Policy, Elsevier, vol. 148(PB).
    11. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the marginal abatement cost curve of CO2 emissions in China: Provincial panel data analysis," Kiel Working Papers 1985, Kiel Institute for the World Economy (IfW Kiel).
    12. Song, Malin & Wang, Jianlin, 2018. "Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model," Energy, Elsevier, vol. 161(C), pages 325-336.
    13. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
    14. Xin-Long Xu & Hsing Hung Chen, 2020. "Exploring the relationships between environmental management and financial sustainability in the energy industry: Linear and nonlinear effects," Energy & Environment, , vol. 31(7), pages 1281-1300, November.
    15. Bowen Xiao & Dongxiao Niu & Han Wu & Haichao Wang, 2017. "Marginal Abatement Cost of CO 2 in China Based on Directional Distance Function: An Industry Perspective," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    16. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    17. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    18. Du, Limin & Hanley, Aoife & Wei, Chu, 2013. "Estimating the marginal abatement costs of carbon dioxide emissions in China: A parametric analysis," Kiel Working Papers 1883, Kiel Institute for the World Economy (IfW Kiel).
    19. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).
    20. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    21. Jianjun Wang & Li Li & Fan Zhang & Qiannan Xu, 2014. "Carbon Emissions Abatement Cost in China: Provincial Panel Data Analysis," Sustainability, MDPI, vol. 6(5), pages 1-17, May.
    22. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    23. Yuan, Xueliang & Mi, Mi & Mu, Ruimin & Zuo, Jian, 2013. "Strategic route map of sulphur dioxide reduction in China," Energy Policy, Elsevier, vol. 60(C), pages 844-851.
    24. Di Maria, Corrado & Zarkovic, Maja & Hintermann, Beat, 2020. "Are Emissions Trading Schemes Cost-effective?," Working papers 2020/13, Faculty of Business and Economics - University of Basel.
    25. Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    26. Neng Shen & Yifan Wang & Hui Peng & Zhiping Hou, 2020. "Renewable Energy Green Innovation, Fossil Energy Consumption, and Air Pollution—Spatial Empirical Analysis Based on China," Sustainability, MDPI, vol. 12(16), pages 1-23, August.
    27. Shogo Eguchi, 2022. "CO 2 Reduction Potential from Efficiency Improvements in China’s Coal-Fired Thermal Power Generation: A Combined Approach of Metafrontier DEA and LMDI," Energies, MDPI, vol. 15(7), pages 1-19, March.
    28. Haiying Liu & Ying Zhong & Chunhong Zhang, 2021. "Energy Costs of Reducing Industrial Sulfur Dioxide Emissions in China," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    29. Chen, Bin & Jin, Yingmei, 2020. "Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China," Energy Economics, Elsevier, vol. 87(C).
    30. Zhou, Yi & Zhou, Wenji & Wei, Chu, 2023. "Environmental performance of the Chinese cement enterprise: An empirical analysis using a text-based directional vector," Energy Economics, Elsevier, vol. 125(C).
    31. Fujii, Hidemichi & Managi, Shunsuke & Kaneko, Shinji, 2019. "Decomposition analysis of air pollution abatement in China: Empirical study for ten industrial sectors from 1998 to 2009," MPRA Paper 92234, University Library of Munich, Germany.
    32. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    33. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    34. Wang, Yi-Shu & Xie, Bai-Chen & Shang, Li-Feng & Li, Wen-Hua, 2013. "Measures to improve the performance of China’s thermal power industry in view of cost efficiency," Applied Energy, Elsevier, vol. 112(C), pages 1078-1086.
    35. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    36. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    37. Nakaishi, Tomoaki, 2021. "Developing effective CO2 and SO2 mitigation strategy based on marginal abatement costs of coal-fired power plants in China," Applied Energy, Elsevier, vol. 294(C).

  24. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
    See citations under working paper version above.
  25. Taniguchi, Mariko & Kaneko, Shinji, 2009. "Operational performance of the Bangladesh rural electrification program and its determinants with a focus on political interference," Energy Policy, Elsevier, vol. 37(6), pages 2433-2439, June.

    Cited by:

    1. Ram P. Dhital & Yutaka Ito & Shinji Kaneko & Satoru Komatsu & Ryota Mihara & Yuichiro Yoshida, 2016. "Does Institutional Failure Undermine the Physical Design Performance of Solar Water Pumping Systems in Rural Nepal?," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    2. Alam, Majbaul & Bhattacharyya, Subhes, 2017. "Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh," Energy, Elsevier, vol. 139(C), pages 433-446.
    3. Yutaka Ito & Ram Dhital & Daisaku Goto & Masaru Ichihashi & Takahiro Ito & Shinji Kaneko & Keisuke Kawata & Yuki Yamamoto & Satoru Komatsu & Yuichiro Yoshida, 2014. "Social Factors Determining the Physical Design Performances of the Solar Water Pumping Systems in Rural Nepal," IDEC DP2 Series 4-2, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    4. Pombo, Carlos & Taborda, Rodrigo, 2006. "Performance and efficiency in Colombia's power distribution system: Effects of the 1994 reform," Energy Economics, Elsevier, vol. 28(3), pages 339-369, May.
    5. Rahman, Md. Mizanur & Paatero, Jukka V. & Poudyal, Aditya & Lahdelma, Risto, 2013. "Driving and hindering factors for rural electrification in developing countries: Lessons from Bangladesh," Energy Policy, Elsevier, vol. 61(C), pages 840-851.
    6. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    7. Nusrat Chowdhury & Chowdhury Akram Hossain & Michela Longo & Wahiba Yaïci, 2020. "Feasibility and Cost Analysis of Photovoltaic-Biomass Hybrid Energy System in Off-Grid Areas of Bangladesh," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    8. Javadi, F.S. & Rismanchi, B. & Sarraf, M. & Afshar, O. & Saidur, R. & Ping, H.W. & Rahim, N.A., 2013. "Global policy of rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 402-416.
    9. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    10. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
    11. Yutaka Ito & Ram Dhital & Daisaku Goto & Masaru Ichihashi & Takahiro Ito & Shinji Kaneko & Keisuke Kawata & Satoru Komatsu & Yuichiro Yoshida, 2014. "Social Factors Determining the Physical Design Performances of the Solar Water Pumping Systems in Rural Nepal," IDEC DP2 Series 3-13, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    12. Holstenkamp, Lars, 2019. "What do we know about cooperative sustainable electrification in the global South? A synthesis of the literature and refined social-ecological systems framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 307-320.
    13. Zhou, Yan & Xing, Xinpeng & Fang, Kuangnan & Liang, Dapeng & Xu, Chunlin, 2013. "Environmental efficiency analysis of power industry in China based on an entropy SBM model," Energy Policy, Elsevier, vol. 57(C), pages 68-75.

  26. Managi, Shunsuke & Kaneko, Shinji, 2009. "Environmental performance and returns to pollution abatement in China," Ecological Economics, Elsevier, vol. 68(6), pages 1643-1651, April.

    Cited by:

    1. Masayuki Shimizu, 2020. "The relationship between pollution abatement costs and environmental regulation: Evidence from the Chinese industrial sector," Review of Development Economics, Wiley Blackwell, vol. 24(2), pages 668-690, May.
    2. Stefano Bosi & David Desmarchelier, 2015. "Limit cycles under a negative effect of pollution on consumption demand: the role of an environmental Kuznets curve," Documents de recherche 15-04, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
    3. Bei He & Xiaoyun Du & Junkang Li & Dan Chen, 2023. "A Effectiveness-and Efficiency-Based Improved Approach for Measuring Ecological Well-Being Performance in China," IJERPH, MDPI, vol. 20(3), pages 1-29, January.
    4. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Examining eco-efficiency convergence of European Industries.The existence of technological spillovers within a metafrontier framework," MPRA Paper 94286, University Library of Munich, Germany.
    5. Yuping Deng & Helian Xu, 2015. "International Direct Investment and Transboundary Pollution: An Empirical Analysis of Complex Networks," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    6. Fujii, Hidemichi & Cao, Jing & Managi, Shunsuke, 2014. "Decomposition of productivity considering multi-environmental pollutants in Chinese industrial sector," MPRA Paper 57997, University Library of Munich, Germany.
    7. H. L. Zou & R. C. Zeng & S. X. Zeng & Jonathan J. Shi, 2015. "How Do Environmental Violation Events Harm Corporate Reputation?," Business Strategy and the Environment, Wiley Blackwell, vol. 24(8), pages 836-854, December.
    8. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
    9. Wursthorn, Sibylle & Poganietz, Witold-Roger & Schebek, Liselotte, 2011. "Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency," Ecological Economics, Elsevier, vol. 70(3), pages 487-496, January.
    10. Xian, Yujiao & Hu, Zhihui & Wang, Ke, 2023. "The least-cost abatement measure of carbon emissions for China's glass manufacturing industry based on the marginal abatement costs," Energy, Elsevier, vol. 284(C).
    11. Kumar, Surender & Managi, Shunsuke, 2010. "Sulfur dioxide allowances: Trading and technological progress," Ecological Economics, Elsevier, vol. 69(3), pages 623-631, January.
    12. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," AMSE Working Papers 1548, Aix-Marseille School of Economics, France, revised 10 Nov 2015.
    13. Kounetas, Konstantinos & Stergiou, Eirini, 2020. "European industrial eco-efficiency under different pollutants' scenarios and heterogeneity structures. Is there a definite direction?," MPRA Paper 98583, University Library of Munich, Germany.
    14. Dongyan Guo & Dongyan Wang & Xiaoyong Zhong & Fan Yang & Yuanyuan Yang & Hansen Jia, 2023. "The Coupling Coordination and Interaction Mechanism of Land Ecological Security and High-Quality Economic Development in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 15(21), pages 1-17, November.
    15. Jian Li & Yang Wang & Nengzhi (Chris) Yao & Xue Cui, 2023. "Exploring the effects of socioemotional wealth on environmental strategies of family firms in China: An integrative perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5368-5381, December.
    16. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," Working Papers halshs-01247183, HAL.
    17. Tang, Pengcheng & Jiang, Qisheng & Mi, Lili, 2021. "One-vote veto: The threshold effect of environmental pollution in China's economic promotion tournament," Ecological Economics, Elsevier, vol. 185(C).
    18. Di Falco, Salvatore, 2012. "Economic Incentives for Pollution Control in Developing Countries: What Can We Learn from the Empirical Literature?," Politica Agricola Internazionale - International Agricultural Policy, Edizioni L'Informatore Agrario, vol. 2012(2), pages 1-17, September.
    19. Tiejun Cheng & Panpan Wang & Qianyi Lu, 2018. "Risk scenario prediction for sudden water pollution accidents based on Bayesian networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1165-1177, October.
    20. X. D. Xu & S. X. Zeng & H. L. Zou & Jonathan J. Shi, 2016. "The Impact of Corporate Environmental Violation on Shareholders' Wealth: a Perspective Taken from Media Coverage," Business Strategy and the Environment, Wiley Blackwell, vol. 25(2), pages 73-91, February.
    21. Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.

  27. Shinji Kaneko & Shunsuke Managi & Hidemichi Fujii & Tetsuya Tsurumi, 2009. "Does an environmental Kuznets curve for waste pollution exist in China?," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 9(1/2), pages 4-19.

    Cited by:

    1. Daigee Shaw & Arwin Pang & Chang-Ching Lin & Ming-Feng Hung, 2010. "Economic growth and air quality in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 12(3), pages 79-96, September.

  28. Ryo Fujikura & Shinji Kaneko & Hirofumi Nakayama & Naoya Sawazu, 2006. "Coverage and reliability of Chinese statistics regarding sulfur dioxide emissions during the late 1990s," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 415-434, December.

    Cited by:

    1. Xiaoqing Chen & Zaiwu Gong, 2017. "DEA Efficiency of Energy Consumption in China’s Manufacturing Sectors with Environmental Regulation Policy Constraints," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
    2. Daniele Brombal, 2017. "Accuracy of Environmental Monitoring in China: Exploring the Influence of Institutional, Political and Ideological Factors," Sustainability, MDPI, vol. 9(3), pages 1-18, February.
    3. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.

  29. Shunsuke Managi & Shinji Kaneko, 2006. "Economic growth and the environment in China: an empirical analysis of productivity," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 6(1), pages 89-133.

    Cited by:

    1. Pinyi Su & Muhammad Imran & Muhammad Nadeem & Shamsheer ul Haq, 2023. "The Role of Environmental Law in Farmers’ Environment-Protecting Intentions and Behavior Based on Their Legal Cognition: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    2. Wang, Li & Shao, Yuhui & Sun, Youxia & Wang, Yanan, 2023. "Rent-seeking, promotion pressure and green economic efficiency: Evidence from China," Economic Systems, Elsevier, vol. 47(1).
    3. Han Bao & Tangwei Teng & Xianzhong Cao & Shengpeng Wang & Senlin Hu, 2022. "The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example," IJERPH, MDPI, vol. 19(17), pages 1-18, August.
    4. Tomas Balezentis & Kristiaan Kerstens & Zhiyang Shen, 2022. "Economic and Environmental Decomposition of Luenberger-Hicks-Moorsteen Total Factor Productivity Indicator: Empirical Analysis of Chinese Textile Firms With a Focus on Reporting Infeasibilities and Qu," Post-Print hal-03833245, HAL.
    5. Wenqin Yan & Dongsheng Yan, 2023. "The Regional Effect of Land Transfer on Green Total Factor Productivity in the Yangtze River Delta: A Spatial Econometric Investigation," Land, MDPI, vol. 12(9), pages 1-18, September.
    6. Kai Xu & Guangdong Tian, 2022. "Codification and Prospect of China’s Codification of Environmental Law from the Perspective of Global Environmental Governance," IJERPH, MDPI, vol. 19(16), pages 1-14, August.
    7. Halkos, George & Polemis, Michael, 2016. "Examining the impact of financial development on the environmental Kuznets curve hypothesis," MPRA Paper 75368, University Library of Munich, Germany.
    8. Jinnan Wu & Nianxin Wang & Zhining Wang, 2017. "Impact of information technology capability on financial performance during the period of economic downturn: the case of Chinese listed companies," Electronic Commerce Research, Springer, vol. 17(3), pages 403-423, September.
    9. Xinfei Li & Chang Xu & Baodong Cheng & Jingyang Duan & Yueming Li, 2021. "Does Environmental Regulation Improve the Green Total Factor Productivity of Chinese Cities? A Threshold Effect Analysis Based on the Economic Development Level," IJERPH, MDPI, vol. 18(9), pages 1-21, April.
    10. Halkos, George & Managi, Shunsuke & Tsilika, Kyriaki, 2017. "Evaluating a continent-wise situation for capital data," Economic Analysis and Policy, Elsevier, vol. 55(C), pages 57-74.
    11. Miao, Zhuang & Baležentis, Tomas & Shao, Shuai & Chang, Dongfeng, 2019. "Energy use, industrial soot and vehicle exhaust pollution—China's regional air pollution recognition, performance decomposition and governance," Energy Economics, Elsevier, vol. 83(C), pages 501-514.
    12. Yang, Fuxia & Yang, Mian & Nie, Hualin, 2013. "Productivity trends of Chinese regions: A perspective from energy saving and environmental regulations," Applied Energy, Elsevier, vol. 110(C), pages 82-89.
    13. Na Zhou & Jinkai Zhao & Kai Zhao & Dong Li, 2021. "Analysis on the Sources of China’s Economic Growth From the Perspective of Cleaner Production," SAGE Open, , vol. 11(2), pages 21582440219, April.
    14. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.
    15. Xinfei Li & Baodong Cheng & Qiling Hong & Chang Xu, 2021. "Can a Win–Win Situation of Economy and Environment Be Achieved in Cities by the Government’s Environmental Regulations?," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    16. Jayanthakumaran, Kankesu & Liu, Ying, 2012. "Openness and the Environmental Kuznets Curve: Evidence from China," Economic Modelling, Elsevier, vol. 29(3), pages 566-576.
    17. Masayuki Shimizu, 2022. "Effects of pollution abatement activities on environmental efficiency and productivity: Empirical evidence from the Chinese industrial sector," Review of Development Economics, Wiley Blackwell, vol. 26(1), pages 484-509, February.
    18. George E. Halkos & Michael L. Polemis, 2017. "Does Financial Development Affect Environmental Degradation? Evidence from the OECD Countries," Business Strategy and the Environment, Wiley Blackwell, vol. 26(8), pages 1162-1180, December.
    19. Huynh, Cong Minh & Le, Quoc Nha & Lam, Thi Huong Tra, 2023. "Is air pollution a government failure or a market failure? Global evidence from a multi-dimensional analysis," Energy Policy, Elsevier, vol. 173(C).
    20. Ruoyu Yang & Weidong Chen, 2019. "Spatial Correlation, Influencing Factors and Environmental Supervision on Mechanism Construction of Atmospheric Pollution: An Empirical Study on SO 2 Emissions in China," Sustainability, MDPI, vol. 11(6), pages 1-13, March.
    21. Fan, Meiting & Shao, Shuai & Yang, Lili, 2015. "Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China)," Energy Policy, Elsevier, vol. 79(C), pages 189-201.

  30. Shunsuke Managi & Shinji Kaneko, 2006. "Productivity of market and environmental abatement in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 459-470, December.

    Cited by:

    1. Christina Bampatsou & George Halkos, 2021. "Non-Parametric Computational Measures for the Analysis of Resource Productivity," Energies, MDPI, vol. 14(11), pages 1-14, May.
    2. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    3. Halkos, George & Tzeremes, Nickolaos & Tzeremes, Panagiotis, 2014. "A nonparametric approach for evaluating long-term energy policy scenarios: An application to the Greek energy system," MPRA Paper 59994, University Library of Munich, Germany.
    4. Huijuan Cao & Hidemichi Fujii & Shunsuke Managi, 2015. "A productivity analysis considering environmental pollution and diseases in China," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-19, December.
    5. Managi, Shunsuke & Kaneko, Shinji, 2009. "Environmental performance and returns to pollution abatement in China," Ecological Economics, Elsevier, vol. 68(6), pages 1643-1651, April.
    6. Miao, Zhuang & Baležentis, Tomas & Shao, Shuai & Chang, Dongfeng, 2019. "Energy use, industrial soot and vehicle exhaust pollution—China's regional air pollution recognition, performance decomposition and governance," Energy Economics, Elsevier, vol. 83(C), pages 501-514.
    7. Sugiawan, Yogi & Managi, Shunsuke, 2016. "The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy," Energy Policy, Elsevier, vol. 98(C), pages 187-198.
    8. Hirofumi Fukuyama & Yuichiro Yoshida & Shunsuke Managi, 2011. "Modal choice between air and rail: a social efficiency benchmarking analysis that considers CO 2 emissions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 89-102, June.

  31. Kaneko, Shinji & Yonamine, Asaka & Jung, Tae Yong, 2006. "Technology choice and CDM projects in China: case study of a small steel company in Shandong Province," Energy Policy, Elsevier, vol. 34(10), pages 1139-1151, July.

    Cited by:

    1. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
    2. Doranova, Asel & Costa, Ionara & Duysters, Geert, 2009. "Knowledge Base Determinants of Technology Sourcing in the Clean Development Mechanism Projects," MERIT Working Papers 2009-015, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Xie, Huiming & Shen, Manhong & Wang, Rui, 2014. "Determinants of clean development mechanism activity: Evidence from China," Energy Policy, Elsevier, vol. 67(C), pages 797-806.

  32. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2006. "Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects," Energy Policy, Elsevier, vol. 34(18), pages 3549-3572, December.

    Cited by:

    1. Zhu, Bing & Zhou, Wenji & Hu, Shanying & Li, Qiang & Griffy-Brown, Charla & Jin, Yong, 2010. "CO2 emissions and reduction potential in China’s chemical industry," Energy, Elsevier, vol. 35(12), pages 4663-4670.
    2. Li, Aijun & Hu, Mingming & Wang, Mingjian & Cao, Yinxue, 2016. "Energy consumption and CO2 emissions in Eastern and Central China: A temporal and a cross-regional decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 284-297.
    3. Rodríguez, Miguel, 2022. "Why do many prospective analyses of CO2 emissions fail? An illustrative example from China," Energy, Elsevier, vol. 244(PB).
    4. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
    5. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    6. Gui, Shusen & Wu, Chunyou & Qu, Ying & Guo, Lingling, 2017. "Path analysis of factors impacting China's CO2 emission intensity: Viewpoint on energy," Energy Policy, Elsevier, vol. 109(C), pages 650-658.
    7. Lan-Cui Liu & Jin-Nan Wang & Gang Wu & Yi-Ming Wei, 2009. "China's regional carbon emissions change over 1997-2007," CEEP-BIT Working Papers 2, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    8. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    9. Shi Wang & Hua Wang & Li Zhang & Jun Dang, 2019. "Provincial Carbon Emissions Efficiency and Its Influencing Factors in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    10. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    11. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    12. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
    13. Kahrl, Fredrich & Roland-Holst, David & Zilberman, David, 2013. "Past as Prologue? Understanding energy use in post-2002 China," Energy Economics, Elsevier, vol. 36(C), pages 759-771.
    14. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    15. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    16. Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Decomposition Analysis of Energy-Related Industrial CO 2 Emissions in China," Energies, MDPI, vol. 6(5), pages 1-19, April.
    17. Tao Ding & Yadong Ning & Yan Zhang, 2017. "Estimation of greenhouse gas emissions in China 1990–2013," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 1097-1115, December.
    18. Yuxue Zhang & Rui Wang & Xingyuan Yang & He Zhang, 2023. "Can China Achieve Its Carbon Emission Peak Target? Empirical Evidence from City-Scale Driving Factors and Emission Reduction Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
    19. Xie, Hualin & Yu, Yanni & Wang, Wei & Liu, Yanchu, 2017. "The substitutability of non-fossil energy, potential carbon emission reduction and energy shadow prices in China," Energy Policy, Elsevier, vol. 107(C), pages 63-71.
    20. Rodríguez, Miguel & Pena-Boquete, Yolanda, 2017. "Carbon intensity changes in the Asian Dragons. Lessons for climate policy design," Energy Economics, Elsevier, vol. 66(C), pages 17-26.
    21. Zhang, Youguo, 2010. "Supply-side structural effect on carbon emissions in China," Energy Economics, Elsevier, vol. 32(1), pages 186-193, January.
    22. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
    23. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    24. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
    25. Ma, Chunbo & Stern, David I., 2008. "Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2517-2526, July.

  33. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.

    Cited by:

    1. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    2. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    3. Wang, Chunhua, 2013. "Differential output growth across regions and carbon dioxide emissions: Evidence from U.S. and China," Energy, Elsevier, vol. 53(C), pages 230-236.
    4. Jiangyue Joy Ying & Benjamin K. Sovacool, 2021. "A fair trade? Expert perceptions of equity, innovation, and public awareness in China’s future Emissions Trading Scheme," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    5. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    6. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2006. "Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects," Energy Policy, Elsevier, vol. 34(18), pages 3549-3572, December.
    7. He, Jie, 2010. "What is the role of openness for China's aggregate industrial SO2 emission?: A structural analysis based on the Divisia decomposition method," Ecological Economics, Elsevier, vol. 69(4), pages 868-886, February.
    8. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    9. Bo Yang & Minhaj Ali & Shujahat Haider Hashmi & Mohsin Shabir, 2020. "Income Inequality and CO 2 Emissions in Developing Countries: The Moderating Role of Financial Instability," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    10. Rodríguez, Miguel, 2022. "Why do many prospective analyses of CO2 emissions fail? An illustrative example from China," Energy, Elsevier, vol. 244(PB).
    11. Wang, Haikun & Zhang, Yanxia & Lu, Xi & Nielsen, Chris P. & Bi, Jun, 2015. "Understanding China׳s carbon dioxide emissions from both production and consumption perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 189-200.
    12. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    13. Tan, Feifei & Lu, Zhaohua, 2015. "Current status and future choices of regional sectors-energy-related CO2 emissions: The third economic growth pole of China," Applied Energy, Elsevier, vol. 159(C), pages 237-251.
    14. Dabo Guan & Terry Barker, 2012. "Low-carbon development in the least developed region: a case study of Guangyuan, Sichuan province, southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 243-254, June.
    15. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    16. Xin Tong & Xuesen Li & Lin Tong & Xuan Jiang, 2018. "Spatial Spillover and the Influencing Factors Relating to Provincial Carbon Emissions in China Based on the Spatial Panel Data Model," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    17. Rafaa Mraïhi & Riadh Harizi, 2014. "Road Freight Transport and Carbon Dioxide Emissions: Policy Options for Tunisia," Energy & Environment, , vol. 25(1), pages 79-92, February.
    18. Lin Yang & Yunfei Yao & Jiutian Zhang & Xian Zhang & Karl J. McAlinden, 2016. "A CGE analysis of carbon market impact on CO2 emission reduction in China: a technology-led approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1107-1128, March.
    19. Inglesi-Lotz, Roula, 2018. "Decomposing the South African CO2 emissions within a BRICS countries context: Signalling potential energy rebound effects," Energy, Elsevier, vol. 147(C), pages 648-654.
    20. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    21. Samargandi, Nahla, 2017. "Sector value addition, technology and CO2 emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 868-877.
    22. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
    23. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    24. Ryo Fujikura & Shinji Kaneko & Hirofumi Nakayama & Naoya Sawazu, 2006. "Coverage and reliability of Chinese statistics regarding sulfur dioxide emissions during the late 1990s," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 415-434, December.
    25. Bin Chen & Yuk-shing Cheng, 2017. "The Impacts of Environmental Regulation on Industrial Activities: Evidence from a Quasi-Natural Experiment in Chinese Prefectures," Sustainability, MDPI, vol. 9(4), pages 1-19, April.
    26. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    27. Wu, Shu, 2020. "The evolution of rural energy policies in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    28. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    29. Gui, Shusen & Wu, Chunyou & Qu, Ying & Guo, Lingling, 2017. "Path analysis of factors impacting China's CO2 emission intensity: Viewpoint on energy," Energy Policy, Elsevier, vol. 109(C), pages 650-658.
    30. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    31. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    32. Xiang Liu & Jia Liu, 2016. "Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO 2 Emitting Countries," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    33. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    34. Sandrine Mathy & Philippe Menanteau & Patrick Criqui, 2018. "After the Paris Agreement: measuring the global decarbonization wedges from national energy scenarios," Post-Print hal-01793378, HAL.
    35. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    36. O’ Mahony, Tadhg & Zhou, Peng & Sweeney, John, 2012. "The driving forces of change in energy-related CO2 emissions in Ireland: A multi-sectoral decomposition from 1990 to 2007," Energy Policy, Elsevier, vol. 44(C), pages 256-267.
    37. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
    38. Ren, Shenggang & Fu, Xiang & Chen, XiaoHong, 2012. "Regional variation of energy-related industrial CO2 emissions mitigation in China," China Economic Review, Elsevier, vol. 23(4), pages 1134-1145.
    39. Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
    40. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    41. Ren, Shenggang & Hu, Zhen, 2012. "Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 43(C), pages 407-414.
    42. Georgatzi, Vasiliki V. & Stamboulis, Yeoryios & Vetsikas, Apostolos, 2020. "Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 11-20.
    43. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    44. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    45. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    46. Chunhua Wang, 2016. "Regional Economic Development, Energy Consumption and Carbon Emissions in China," EEPSEA Research Report rr20160338, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2016.
    47. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    48. Hu, Junfeng & Kahrl, Fredrich & Yan, Qingyou & Wang, Xiaoya, 2012. "The impact of China's differential electricity pricing policy on power sector CO2 emissions," Energy Policy, Elsevier, vol. 45(C), pages 412-419.
    49. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
    50. Ying-jie Song & Fu-wei Ma & Jing-ya Qu, 2020. "Impacts of Cultural Diversity on Carbon Emission Effects: From the Perspective of Environmental Regulations," IJERPH, MDPI, vol. 17(17), pages 1-13, August.
    51. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    52. Guiliang Tian & Suwan Yu & Zheng Wu & Qing Xia, 2022. "Study on the Emission Reduction Effect and Spatial Difference of Carbon Emission Trading Policy in China," Energies, MDPI, vol. 15(5), pages 1-20, March.
    53. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    54. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," AMSE Working Papers 1548, Aix-Marseille School of Economics, France, revised 10 Nov 2015.
    55. Roula Inglesi-Lotz, 2017. "Decomposing the South African COâ‚‚ emissions within a BRICS countries context: The energy rebound hypothesis," Working Papers 690, Economic Research Southern Africa.
    56. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
    57. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    58. Ryo Fujikura & Shinji Kaneko & Hirofumi Nakayama & Naoya Sawazu, 2006. "Coverage and reliability of Chinese statistics regarding sulfur dioxide emissions during the late 1990s," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 415-434, December.
    59. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    60. Vazquez, Luis & Luukkanen, Jyrki & Kaisti, Hanna & Käkönen, Mira & Majanne, Yrjö, 2015. "Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 638-645.
    61. Tijun Fan & Ruiling Luo & Haiyang Xia & Xiaopeng Li, 2015. "Using LMDI method to analyze the influencing factors of carbon emissions in China’s petrochemical industries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 319-332, February.
    62. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    63. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    64. Lo, Kevin & Wang, Mark Y., 2013. "Energy conservation in China’s Twelfth Five-Year Plan period: Continuation or paradigm shift?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 499-507.
    65. Li, Man, 2010. "Decomposing the change of CO2 emissions in China: A distance function approach," Ecological Economics, Elsevier, vol. 70(1), pages 77-85, November.
    66. Shaojian Wang & Chuanglin Fang & Guangdong Li, 2015. "Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-23, September.
    67. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    68. Siti Indati Mustapa & Hussain Ali Bekhet, 2015. "Investigating Factors Affecting CO2 Emissions in Malaysian Road Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1073-1083.
    69. Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    70. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    71. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    72. Shufen Guo & Ludi Wen & Yanrui Wu & Xiaohang Yue & Guilian Fan, 2020. "Fiscal Decentralization and Local Environmental Pollution in China," IJERPH, MDPI, vol. 17(22), pages 1-17, November.
    73. Wankeun Oh & Jonghyun Yoo, 2020. "Long-Term Increases and Recent Slowdowns of CO 2 Emissions in Korea," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    74. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    75. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    76. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    77. Steenhof, Paul A., 2006. "Decomposition of electricity demand in China's industrial sector," Energy Economics, Elsevier, vol. 28(3), pages 370-384, May.
    78. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    79. Tang, Weiqi & Wu, Libo & Zhang, ZhongXiang, 2010. "Oil price shocks and their short- and long-term effects on the Chinese economy," Energy Economics, Elsevier, vol. 32(Supplemen), pages 3-14, September.
    80. Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Decomposition Analysis of Energy-Related Industrial CO 2 Emissions in China," Energies, MDPI, vol. 6(5), pages 1-19, April.
    81. Xu, Jin-Hua & Fleiter, Tobias & Fan, Ying & Eichhammer, Wolfgang, 2014. "CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050," Applied Energy, Elsevier, vol. 130(C), pages 592-602.
    82. Qiang Du & Xinran Lu & Yi Li & Min Wu & Libiao Bai & Ming Yu, 2018. "Carbon Emissions in China’s Construction Industry: Calculations, Factors and Regions," IJERPH, MDPI, vol. 15(6), pages 1-17, June.
    83. Danish, & Wang, Bo & Wang, Zhaohua, 2018. "Imported technology and CO2 emission in China: Collecting evidence through bound testing and VECM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4204-4214.
    84. Li, Huanan & Mu, Hailin & Zhang, Ming & Gui, Shusen, 2012. "Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions," Energy, Elsevier, vol. 39(1), pages 319-326.
    85. Zhaohua Wang & Yixiang Zhang & Xian Zhang, 2011. "Energy technology patents-CO2 emissions nexus: An empirical analysis from China," CEEP-BIT Working Papers 21, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    86. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    87. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    88. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    89. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," Working Papers halshs-01247183, HAL.
    90. Yan Song & Ming Zhang & Shuang Dai, 2015. "Study on China’s energy-related CO 2 emission at provincial level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 89-100, May.
    91. Lin Yang & Yunfei Yao & Jiutian Zhang & Xian Zhang & Karl McAlinden, 2016. "A CGE analysis of carbon market impact on CO 2 emission reduction in China: a technology-led approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1107-1128, March.
    92. Victor Moutinho & José Manuel Xavier & Pedro Miguel Silva, 2014. "Examining the energy-related CO2 emissions using Decomposition Approach in EU-15 before and after the Kyoto Protocol," CEFAGE-UE Working Papers 2014_17, University of Evora, CEFAGE-UE (Portugal).
    93. Ang, B.W. & Liu, Na, 2007. "Negative-value problems of the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 739-742, January.
    94. Rodríguez, Miguel & Pena-Boquete, Yolanda, 2017. "Carbon intensity changes in the Asian Dragons. Lessons for climate policy design," Energy Economics, Elsevier, vol. 66(C), pages 17-26.
    95. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    96. Chai, Jian & Du, Mengfan & Liang, Ting & Sun, Xiaojie Christine & Yu, Ji & Zhang, Zhe George, 2019. "Coal consumption in China: How to bend down the curve?," Energy Economics, Elsevier, vol. 80(C), pages 38-47.
    97. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
    98. Yanan Chen & Sheng Lin, 2015. "Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1893-1909, April.
    99. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    100. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    101. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    102. Elliott, Robert J.R. & Sun, Puyang & Chen, Siyang, 2013. "Energy intensity and foreign direct investment: A Chinese city-level study," Energy Economics, Elsevier, vol. 40(C), pages 484-494.
    103. Wu, Libo & Huo, Hong, 2014. "Energy efficiency achievements in China׳s industrial and transport sectors: How do they rate?," Energy Policy, Elsevier, vol. 73(C), pages 38-46.
    104. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
    105. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    106. Zhang, Ming & Mu, Hailin & Ning, Yadong, 2009. "Accounting for energy-related CO2 emission in China, 1991-2006," Energy Policy, Elsevier, vol. 37(3), pages 767-773, March.
    107. Ma, Chunbo & Stern, David I., 2008. "Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2517-2526, July.
    108. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Liu, Weidong & Li, Shalang & Zhang, Rongrong & Nielsen, Chris P. & Bi, Jun, 2014. "Temporal and spatial variations in consumption-based carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 60-68.
    109. Zhang, Ming & Mu, Hailin & Ning, Yadong & Song, Yongchen, 2009. "Decomposition of energy-related CO2 emission over 1991-2006 in China," Ecological Economics, Elsevier, vol. 68(7), pages 2122-2128, May.

  34. Shunsuke Managi & Shinji Kaneko, 2004. "Environmental Productivity in China," Economics Bulletin, AccessEcon, vol. 17(2), pages 1-10.

    Cited by:

    1. ZHAO Xin & XUE Yue-mei & KANG Wang-lin & DING Li-li & ZHU Lin, 2018. "Measuring Efficiency of Ocean Economy in China Based on a Novel Luenberger Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 5-21, June.
    2. Ali, Amjad & Audi, Marc & ŞENTÜRK, İsmail & Roussel, Yannick, 2021. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," MPRA Paper 111215, University Library of Munich, Germany.
    3. Emilio Galdeano‐Gómez, 2010. "Exporting and Environmental Performance: A Firm‐level Productivity Analysis," The World Economy, Wiley Blackwell, vol. 33(1), pages 60-88, January.
    4. Wenqin Yan & Dongsheng Yan, 2023. "The Regional Effect of Land Transfer on Green Total Factor Productivity in the Yangtze River Delta: A Spatial Econometric Investigation," Land, MDPI, vol. 12(9), pages 1-18, September.
    5. Weijiang Liu & Mingze Du & Yuxin Bai, 2021. "Mechanisms of Environmental Regulation’s Impact on Green Technological Progress—Evidence from China’s Manufacturing Sector," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    6. Xinfei Li & Chang Xu & Baodong Cheng & Jingyang Duan & Yueming Li, 2021. "Does Environmental Regulation Improve the Green Total Factor Productivity of Chinese Cities? A Threshold Effect Analysis Based on the Economic Development Level," IJERPH, MDPI, vol. 18(9), pages 1-21, April.
    7. Zhangsheng Liu & Xiaolu Zhang & Liuqingqing Yang & Yinjie Shen, 2021. "Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    8. Zhou Wei & Adel Ben Youssef, 2012. "The productivity impact of international technology transfer in China: Empirical investigation on Chinese regions," Economics Bulletin, AccessEcon, vol. 32(2), pages 1590-1603.
    9. Galdeano-Gomez, Emilio & Cespedes-Lorente, Jose & Rodriguez-Rodriguez, Manuel, 2006. "Productivity and Environmental Performance in Marketing Cooperatives: Incentive Schemes on the Horticultural Sector," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25738, International Association of Agricultural Economists.
    10. Shogo Eguchi, 2017. "Accounting for resource accumulation in Japanese prefectures: an environmental efficiency analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-22, December.
    11. Yanhong Feng & Shuanglian Chen & Pierre Failler, 2020. "Productivity Effect Evaluation on Market-Type Environmental Regulation: A Case Study of SO 2 Emission Trading Pilot in China," IJERPH, MDPI, vol. 17(21), pages 1-27, October.
    12. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    13. Yang, Guo-liang & Fukuyama, Hirofumi, 2018. "Measuring the Chinese regional production potential using a generalized capacity utilization indicator," Omega, Elsevier, vol. 76(C), pages 112-127.
    14. Pengsheng Li & Yanying Chen, 2019. "The Influence of Enterprises’ Bargaining Power on the Green Total Factor Productivity Effect of Environmental Regulation—Evidence from China," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    15. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    16. Jing Cao, 2007. "Measuring Green Productivity Growth for China's Manufacturing Sectors: 1991–2000," Asian Economic Journal, East Asian Economic Association, vol. 21(4), pages 425-451, December.
    17. Dongdong Ma & Guifang Li & Feng He, 2021. "Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    18. Xinfei Li & Baodong Cheng & Qiling Hong & Chang Xu, 2021. "Can a Win–Win Situation of Economy and Environment Be Achieved in Cities by the Government’s Environmental Regulations?," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    19. Masayuki Shimizu, 2022. "Effects of pollution abatement activities on environmental efficiency and productivity: Empirical evidence from the Chinese industrial sector," Review of Development Economics, Wiley Blackwell, vol. 26(1), pages 484-509, February.
    20. Xiao, Lu & Liu, Jianyue & Ge, Jinwen, 2021. "Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries," Agricultural Water Management, Elsevier, vol. 243(C).
    21. Yanrui Wu, 2010. "Regional Environmental Performance and Its Determinants in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 18(3), pages 73-89, May.

  35. Shinji Kaneko & Katsuya Tanaka & Tomoyo Toyota & Shunsuke Managi, 2004. "Water efficiency of agricultural production in China: regional comparison from 1999 to 2002," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 3(3/4), pages 231-251.

    Cited by:

    1. Gadanakis, Yiorgos & Bennett, Richard & Park, Julian & Areal, Francisco Jose, 2015. "Improving productivity and water use efficiency: A case study of farms in England," Agricultural Water Management, Elsevier, vol. 160(C), pages 22-32.
    2. Aweewan Mangmeechai, 2014. "Environmental externalities in relation to agricultural sector in Thailand with trade-linked analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(5), pages 1031-1040, October.
    3. Xuedong Liang & Jiacheng Li & Gengxuan Guo & Sipan Li & Qunxi Gong, 2023. "Urban water resource utilization efficiency based on SBM-undesirable–Gini coefficient–kernel density in Gansu Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13015-13034, November.
    4. Hailiang Ma & Chenling Shi & Nan-Ting Chou, 2016. "China’s Water Utilization Efficiency: An Analysis with Environmental Considerations," Sustainability, MDPI, vol. 8(6), pages 1-15, May.
    5. Isidoro GUZMÁN & Narciso ARCAS, 2008. "The Usefulness Of Accounting Information In The Measurement Of Technical Efficiency In Agricultural Cooperatives," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 79(1), pages 107-131, March.
    6. Weixin Yang & Lingguang Li, 2017. "Analysis of Total Factor Efficiency of Water Resource and Energy in China: A Study Based on DEA-SBM Model," Sustainability, MDPI, vol. 9(8), pages 1-21, July.
    7. Sheng, Jichuan & Qiu, Wenge, 2022. "Water-use technical efficiency and income: Evidence from China's South-North Water Transfer Project," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

Books

  1. Shunsuke Managi & Shinji Kaneko, 2009. "Chinese Economic Development and the Environment," Books, Edward Elgar Publishing, number 13562.

    Cited by:

    1. Fujii, Hidemichi & Cao, Jing & Managi, Shunsuke, 2014. "Decomposition of productivity considering multi-environmental pollutants in Chinese industrial sector," MPRA Paper 57997, University Library of Munich, Germany.
    2. Julien Chevallier, 2013. "At the crossroads: can China grow in a low-carbon way?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 31, pages 666-681, Edward Elgar Publishing.
    3. Yagi, Michiyuki & Managi, Shunsuke & Kaneko, Shinji, 2014. "Water Use and Wastewater Discharge of Industrial Sector in China," MPRA Paper 96425, University Library of Munich, Germany.
    4. Jing Lan & Alistair Munro, 2014. "Environmental regulatory stringency and the market for abatement goods and services in China," GRIPS Discussion Papers 14-18, National Graduate Institute for Policy Studies.
    5. Makiko Nakano & Shunsuke Managi, 2012. "Waste generations and efficiency measures in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(4), pages 327-339, October.
    6. Yang, Fuxia & Yang, Mian & Nie, Hualin, 2013. "Productivity trends of Chinese regions: A perspective from energy saving and environmental regulations," Applied Energy, Elsevier, vol. 110(C), pages 82-89.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.