IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3114-d562936.html
   My bibliography  Save this article

Non-Parametric Computational Measures for the Analysis of Resource Productivity

Author

Listed:
  • Christina Bampatsou

    (Department of Regional Development, Faculty of Economic Sciences, Ionian University, Filosofon & Tzeveleki, 31100 Lefkada, Greece
    Laboratory of Operations Research, Department of Economics, University of Thessaly, 78 October 28th Street, 38333 Volos, Greece)

  • George Halkos

    (Laboratory of Operations Research, Department of Economics, University of Thessaly, 78 October 28th Street, 38333 Volos, Greece)

Abstract

In this study, we assumed that 28 European countries (Decision Making Units (DMUs)) aimed to accomplish higher economic outputs, using fewer resources and producing fewer emissions in the form of environmental degradation. In this context, we studied the drivers of total factor productivity change (TFPCH) in DMUs, associated with either managerial capabilities (efficiency change (EC)) or innovations (technical change (TC)) in resource-saving production methods, before and after the integration of CO 2 (carbon dioxide) emissions as an additional variable (undesirable output) in the initial model of one output (gross domestic product (GDP)) and five inputs (labor, capital, energy, domestic material consumption and recycled municipal waste). The primary focus of this study is to identify best practices that policymakers can adopt as they attempt to reduce productivity loss. Our results highlight the weak areas of individual countries and seem to indicate the action that should be taken to improve their productivity by taking into consideration the main driving force behind productivity and technical efficiency change. Our findings reveal that an effective use of technological developments is determined as important strategic information for ensuring managerial performance.

Suggested Citation

  • Christina Bampatsou & George Halkos, 2021. "Non-Parametric Computational Measures for the Analysis of Resource Productivity," Energies, MDPI, vol. 14(11), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3114-:d:562936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    2. Fare,Rolf & Grosskopf,Shawna & Lovell,C. A. Knox, 2008. "Production Frontiers," Cambridge Books, Cambridge University Press, number 9780521072069.
    3. Shunsuke Managi & Shinji Kaneko, 2006. "Productivity of market and environmental abatement in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 459-470, December.
    4. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    5. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    6. Eucabeth Majiwa & Boon L. Lee & Clevo Wilson & Hidemichi Fujii & Shunsuke Managi, 2018. "A network data envelopment analysis (NDEA) model of post-harvest handling: the case of Kenya’s rice processing industry," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(3), pages 631-648, June.
    7. Kortelainen, Mika, 2008. "Dynamic environmental performance analysis: A Malmquist index approach," Ecological Economics, Elsevier, vol. 64(4), pages 701-715, February.
    8. Christina Bampatsou & George Halkos & Andreas Dimou, 2017. "Determining economic productivity under environmental and resource pressures: an empirical application," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-16, December.
    9. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    10. Yujiao Xian & Ke Wang & Xunpeng Shi & Chi Zhang & Yi-Ming Wei & Zhimin Huang, 2018. "Carbon emissions intensity reduction target for China¡¯s power industry: An efficiency and productivity perspective," CEEP-BIT Working Papers 117, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    11. Peng Zhou & Kim Leng Poh & Beng Wah Ang, 2016. "Data Envelopment Analysis for Measuring Environmental Performance," International Series in Operations Research & Management Science, in: Shiuh-Nan Hwang & Hsuan-Shih Lee & Joe Zhu (ed.), Handbook of Operations Analytics Using Data Envelopment Analysis, chapter 0, pages 31-49, Springer.
    12. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    13. Ge Gao & Ke Wang & Chi Zhang & Yi-Ming Wei, 2019. "Synergistic effects of environmental regulations on carbon productivity growth in China’s major industrial sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 55-72, January.
    14. Rácz, Viktor J. & Vestergaard, Niels, 2016. "Productivity and efficiency measurement of the Danish centralized biogas power sector," Renewable Energy, Elsevier, vol. 92(C), pages 397-404.
    15. Doojav, Gan-Ochir & Kalirajan, Kaliappa, 2020. "Sources of energy productivity change in Australian sub-industries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 1-10.
    16. George E. Halkos & Christina Bampatsou, 2019. "Economic growth and environmental degradation: a conditional nonparametric frontier analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 325-347, April.
    17. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    18. Long, Xingle & Zhao, Xicang & Cheng, Faxin, 2015. "The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures," Energy Policy, Elsevier, vol. 81(C), pages 61-66.
    19. Christina Bampatsou & George Halkos & Dimitra Kaika & Efthimios Zervas, 2018. "Impact of technical and efficiency changes on productivity," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 17(2/3), pages 144-162.
    20. Nielsen, Hana, 2017. "Productive efficiency in the iron and steel sector under state planning: The case of China and former Czechoslovakia in a comparative perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1732-1743.
    21. Bampatsou, Christina & Halkos, George & Beneki, Christina, 2021. "Energy and material flow management to improve EU productivity," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 83-93.
    22. Coelli, T J, 1996. "Measurement of Total Factor Productivity Growth and Biases in Technological Change in Western Australian Agriculture," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 77-91, Jan.-Feb..
    23. Lee, Chia-Yen, 2018. "Mixed-strategy Nash equilibrium in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1013-1024.
    24. Makiko Nakano & Shunsuke Managi, 2012. "Waste generations and efficiency measures in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(4), pages 327-339, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halkos, George E. & Aslanidis, Panagiotis Stavros C., 2023. "New circular economy perspectives on measuring sustainable waste management productivity," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 764-779.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bampatsou, Christina & Halkos, George & Beneki, Christina, 2021. "Energy and material flow management to improve EU productivity," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 83-93.
    2. George E. Halkos & Christina Bampatsou, 2019. "Economic growth and environmental degradation: a conditional nonparametric frontier analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 325-347, April.
    3. Halkos, George & Bampatsou, Christina, 2016. "Driving forces of different productivity models," MPRA Paper 75398, University Library of Munich, Germany.
    4. Halkos, George & Bampatsou, Christina, 2017. "Technical efficiency, productivity change and environmental degradation," MPRA Paper 77176, University Library of Munich, Germany.
    5. Bampatsou, Christina & Halkos, George, 2018. "Dynamics of productivity taking into consideration the impact of energy consumption and environmental degradation," Energy Policy, Elsevier, vol. 120(C), pages 276-283.
    6. Halkos, George & Bampatsou, Christina, 2016. "Investigating the effect of efficiency and technical changes on productivity," MPRA Paper 76287, University Library of Munich, Germany.
    7. Chen, Bin & Jin, Yingmei, 2020. "Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China," Energy Economics, Elsevier, vol. 87(C).
    8. Jens J. Krüger, 2020. "Long‐run productivity trends: A global update with a global index," Review of Development Economics, Wiley Blackwell, vol. 24(4), pages 1393-1412, November.
    9. Galdeano-Gomez, Emilio & Cespedes-Lorente, Jose & Rodriguez-Rodriguez, Manuel, 2006. "Productivity and Environmental Performance in Marketing Cooperatives: Incentive Schemes on the Horticultural Sector," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25738, International Association of Agricultural Economists.
    10. Wheelock, David C & Wilson, Paul W, 1999. "Technical Progress, Inefficiency, and Productivity Change in U.S. Banking, 1984-1993," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 31(2), pages 212-234, May.
    11. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    12. Gianluca Gucciardi, 2022. "Measuring the relative development and integration of EU countries’ capital markets using composite indicators and cluster analysis," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 158(4), pages 1043-1083, November.
    13. Djula Borozan, 2021. "Technical Efficiency and Productivity Change in the European Union with Undesirable Output Considered," Energies, MDPI, vol. 14(16), pages 1-15, August.
    14. Perry Sadorsky, 2021. "Eco-Efficiency for the G18: Trends and Future Outlook," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    15. Halkos, George & Tzeremes, Nickolaos, 2011. "Towards a culture of environmental efficiency: An application of conditional partial nonparametric frontiers," MPRA Paper 28690, University Library of Munich, Germany.
    16. Eva Richterová & Martin Richter & Zlata Sojková, 2021. "Regional eco-efficiency of the agricultural sector in V4 regions, its dynamics in time and decomposition on the technological and pure technical eco-efficiency change," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(3), pages 553-576, September.
    17. Léopold Simar & Paul W. Wilson, 2023. "Another look at productivity growth in industrialized countries," Journal of Productivity Analysis, Springer, vol. 60(3), pages 257-272, December.
    18. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
    19. J. David Cummins & Mary A. Weiss, 1998. "Analyzing Firm Performance in the Insurance Industry Using Frontier Efficiency Methods," Center for Financial Institutions Working Papers 98-22, Wharton School Center for Financial Institutions, University of Pennsylvania.
    20. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3114-:d:562936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.