IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i11p1110-d81694.html
   My bibliography  Save this article

Are Emissions Trading Policies Sustainable? A Study of the Petrochemical Industry in Korea

Author

Listed:
  • Yongrok Choi

    (Global E-Governance Program, Inha University, Inharo100, Nam-gu, Incheon 402-751, Korea)

  • Hyoung Seok Lee

    (Global E-Governance Program, Inha University, Inharo100, Nam-gu, Incheon 402-751, Korea)

Abstract

In 2015, Korea inaugurated an emissions trading scheme (ETS). In this regard, many studies have considered the sustainable performance and efficiency of industries that emit carbon; however, few have examined ETS at company level. This paper focuses on companies’ data related to Korean ETS in the petrochemical industry. Based on the non-radial, nonparametric directional distance function (DDF), the paper evaluates the governance factors related to ETS policies and sustainable performance in terms of carbon technical efficiency (CTE), the shadow price of carbon emissions, and Morishima elasticity between the input and undesirable output of carbon emissions. Using a dual model, the paper shows that Korean ETS has huge potential for participating companies to improve CTE. If all companies consider the production possibility frontier, they could potentially improve efficiency by 52.8%. Further, Morishima elasticity shows strong substitutability between capital and energy, implying that green technology investment should bring a higher degree of energy-saving performance. Unfortunately, however, the market price of carbon emissions is far too low compared with its shadow price, suggesting that the Korean government’s price-oriented market intervention has resulted in the ETS producing poor sustainable performance. As the title suggests, ETS of Korea is not sustainable at the current stage, but with more efforts on the transition period, all the developing countries should support the governance factors of the ETS in terms of the more effective green investment with easier access to the green technology.

Suggested Citation

  • Yongrok Choi & Hyoung Seok Lee, 2016. "Are Emissions Trading Policies Sustainable? A Study of the Petrochemical Industry in Korea," Sustainability, MDPI, vol. 8(11), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1110-:d:81694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/11/1110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/11/1110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    2. Oestreich, A. Marcel & Tsiakas, Ilias, 2015. "Carbon emissions and stock returns: Evidence from the EU Emissions Trading Scheme," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 294-308.
    3. Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
    4. Jaraitė, Jūratė & Di Maria, Corrado, 2012. "Efficiency, productivity and environmental policy: A case study of power generation in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1557-1568.
    5. Kumar, Surender & Managi, Shunsuke, 2010. "Sulfur dioxide allowances: Trading and technological progress," Ecological Economics, Elsevier, vol. 69(3), pages 623-631, January.
    6. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    7. Lee, Myunghun & Jin, Yingmei, 2012. "The substitutability of nuclear capital for thermal capital and the shadow price in the Korean electric power industry," Energy Policy, Elsevier, vol. 51(C), pages 834-841.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Efficiency-based rank assessment for electric power industry: A combined use of Data Envelopment Analysis (DEA) and DEA-Discriminant Analysis (DA)," Energy Economics, Elsevier, vol. 34(3), pages 634-644.
    9. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    10. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
    11. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.
    12. Liu, C.H. & Lin, Sue J. & Lewis, Charles, 2010. "Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis," Energy Policy, Elsevier, vol. 38(2), pages 1049-1058, February.
    13. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    14. Yongrok Choi, 2015. "Intermediary Propositions for Green Growth with Sustainable Governance," Sustainability, MDPI, vol. 7(11), pages 1-17, November.
    15. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    16. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    17. Martini, Gianmaria & Manello, Alessandro & Scotti, Davide, 2013. "The influence of fleet mix, ownership and LCCs on airports’ technical/environmental efficiency," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 37-52.
    18. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    19. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    20. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    21. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    22. Ning Zhang & Fanbin Kong & Chih-Chun Kung, 2015. "On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China’s Poyang Lake Ecological Economics Zone," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 389-404, October.
    23. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    24. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    25. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    26. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    27. Barros, Carlos Pestana & Peypoch, Nicolas, 2008. "Technical efficiency of thermoelectric power plants," Energy Economics, Elsevier, vol. 30(6), pages 3118-3127, November.
    28. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    29. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cemal Atici, 2022. "Reconciling the flexibility mechanisms of climate policies towards the inclusiveness of developing countries: commitments and prospects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9048-9067, July.
    2. Lin, Boqiang & Jia, Zhijie, 2017. "The impact of Emission Trading Scheme (ETS) and the choice of coverage industry in ETS: A case study in China," Applied Energy, Elsevier, vol. 205(C), pages 1512-1527.
    3. Chune Young Chung & Minkyu Jeong & Jason Young, 2018. "The Price Determinants of the EU Allowance in the EU Emissions Trading Scheme," Sustainability, MDPI, vol. 10(11), pages 1-29, November.
    4. Yongrok Choi & Hyoung Seok Lee & Ahmed Mastur, 2019. "Are Sustainable Development Policies Really Feasible? Focused on the Petrochemical Industry in Korea," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    5. Lee, Hyoungsuk & Choi, Yongrok, 2018. "Greenhouse gas performance of Korean local governments based on non-radial DDF," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 13-21.
    6. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    7. Yongrok Choi & Hyoungsuk Lee & Jahira Debbarma, 2020. "Are Global Companies Better in Environmental Efficiency in India? Based on Metafrontier Malmquist CO 2 Performance," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    8. Yongrok Choi & Chao Qi, 2019. "Is South Korea’s Emission Trading Scheme Effective? An Analysis Based on the Marginal Abatement Cost of Coal-Fueled Power Plants," Sustainability, MDPI, vol. 11(9), pages 1-12, April.
    9. Yongrok Choi, 2017. "Sustainable Governance in Northeast Asia: Challenges for the Sustainable Frontier," Sustainability, MDPI, vol. 9(2), pages 1-7, January.
    10. Jiali Zheng & Han Qiao & Shouyang Wang, 2017. "The Effect of Carbon Tax in Aviation Industry on the Multilateral Simulation Game," Sustainability, MDPI, vol. 9(7), pages 1-24, July.
    11. Hyoung Seok Lee & Yongrok Choi, 2019. "Environmental Performance Evaluation of the Korean Manufacturing Industry Based on Sequential DEA," Sustainability, MDPI, vol. 11(3), pages 1-14, February.
    12. Yongrok Choi & Yanni Yu & Hyoung Seok Lee, 2018. "A Study on the Sustainable Performance of the Steel Industry in Korea Based on SBM-DEA," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    13. Lin, Boqiang & Jia, Zhijie, 2018. "Impact of quota decline scheme of emission trading in China: A dynamic recursive CGE model," Energy, Elsevier, vol. 149(C), pages 190-203.
    14. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2019. "Sustainable Feasibility of Carbon Trading Policy on Heterogenetic Economic and Industrial Development," Sustainability, MDPI, vol. 11(23), pages 1-18, December.
    15. Luan Santos & Rafael Garaffa & André F. P. Lucena & Alexandre Szklo, 2018. "Impacts of Carbon Pricing on Brazilian Industry: Domestic Vulnerability and International Trade Exposure," Sustainability, MDPI, vol. 10(7), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongrok Choi & Hyoung Seok Lee & Ahmed Mastur, 2019. "Are Sustainable Development Policies Really Feasible? Focused on the Petrochemical Industry in Korea," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    2. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    5. Lee, Hyoungsuk & Choi, Yongrok, 2018. "Greenhouse gas performance of Korean local governments based on non-radial DDF," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 13-21.
    6. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    7. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    8. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    9. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    10. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    11. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    12. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    13. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    14. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    15. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    16. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    17. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    18. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    19. Zhang, Ning & Kong, Fanbin & Choi, Yongrok, 2014. "Measuring sustainability performance for China: A sequential generalized directional distance function approach," Economic Modelling, Elsevier, vol. 41(C), pages 392-397.
    20. Wei, Chu & Löschel, Andreas & Liu, Bing, 2015. "Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis," Energy Economics, Elsevier, vol. 49(C), pages 33-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1110-:d:81694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.