IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i7p1055-1066.html
   My bibliography  Save this article

Environmental production functions and environmental directional distance functions

Author

Listed:
  • Färe, Rolf
  • Grosskopf, Shawna
  • Pasurka, Carl A.

Abstract

This study derives the relationship between environmental production functions and environmental directional distance functions. These two approaches make different assumptions when modeling the joint production of good and bad outputs. The environmental production function credits a producer solely for expanding good output production, while the directional environmental distance function credits a producer for simultaneously increasing production of the good output and reducing production of bad outputs. Estimates of technical efficiency and pollution abatement costs are calculated using data from coal-fired power plants. These results provide the empirical basis for comparing the environmental production function to the environmental directional distance function.

Suggested Citation

  • Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:7:p:1055-1066
    DOI: 10.1016/j.energy.2006.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206002519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carl Pasurka, 2001. "Technical Change and Measuring Pollution Abatement Costs: An Activity Analysis Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 61-85, January.
    2. Boyd, Gale A. & McClelland, John D., 1999. "The Impact of Environmental Constraints on Productivity Improvement in Integrated Paper Plants," Journal of Environmental Economics and Management, Elsevier, vol. 38(2), pages 121-142, September.
    3. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    4. Curtis Carlson & Dallas Burtraw & Maureen Cropper & Karen L. Palmer, 2000. "Sulfur Dioxide Control by Electric Utilities: What Are the Gains from Trade?," Journal of Political Economy, University of Chicago Press, vol. 108(6), pages 1292-1326, December.
    5. Christainsen, G.B. & Tietenberg, T.H., 1985. "Distributional and macroeconomic aspects of environmental policy," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 1, chapter 9, pages 345-393, Elsevier.
    6. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    7. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    8. Aiken, Deborah Vaughn & Pasurka, Carl Jr., 2003. "Adjusting the measurement of US manufacturing productivity for air pollution emissions control," Resource and Energy Economics, Elsevier, vol. 25(4), pages 329-351, October.
    9. Fare, R. & Grosskopf, S. & Pasurka, C., 1986. "Effects on relative efficiency in electric power generation due to environmental controls," Resources and Energy, Elsevier, vol. 8(2), pages 167-184, June.
    10. Fare, Rolf & Grosskopf, Shawna, 1983. "Measuring output efficiency," European Journal of Operational Research, Elsevier, vol. 13(2), pages 173-179, June.
    11. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    12. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    2. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl, 2016. "Technical change and pollution abatement costs," European Journal of Operational Research, Elsevier, vol. 248(2), pages 715-724.
    3. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.
    4. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    5. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    6. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    7. Liu, Haiying & Owens, Katharine A. & Yang, Ke & Zhang, Chunhong, 2020. "Pollution abatement costs and technical changes under different environmental regulations," China Economic Review, Elsevier, vol. 62(C).
    8. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    9. Murty, Sushama & Russell, R. Robert, 2010. "On modeling pollution-generating technologies," The Warwick Economics Research Paper Series (TWERPS) 931, University of Warwick, Department of Economics.
    10. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    11. Rolf Färe & Shawna Grosskopf & Carl A. Pasurka, 2023. "Revealed pollution abatement costs revisited," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 601-629, October.
    12. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    13. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    14. Managi, Shunsuke & Kaneko, Shinji, 2009. "Environmental performance and returns to pollution abatement in China," Ecological Economics, Elsevier, vol. 68(6), pages 1643-1651, April.
    15. Victoria Wojcik & Harald Dyckhoff & Sebastian Gutgesell, 2017. "The desirable input of undesirable factors in data envelopment analysis," Annals of Operations Research, Springer, vol. 259(1), pages 461-484, December.
    16. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    17. Leightner, Jonathan E. & Inoue, Tomoo, 2008. "Capturing climate's effect on pollution abatement with an improved solution to the omitted variables problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 540-557, December.
    18. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    19. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    20. Telle, Kjetil & Larsson, Jan, 2007. "Do environmental regulations hamper productivity growth? How accounting for improvements of plants' environmental performance can change the conclusion," Ecological Economics, Elsevier, vol. 61(2-3), pages 438-445, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:7:p:1055-1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.