IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119307920.html
   My bibliography  Save this article

The evolution of rural energy policies in China: A review

Author

Listed:
  • Wu, Shu

Abstract

Rural institutional settings and policies have played an essential role in shaping China's rural energy system. Based on a mix of 275 rural energy policies and extensive literature, this paper reviews the history of rural energy policies and key policy instruments in China from 1949 to 2018. In view of socioeconomic context and rural energy issues, the evolution background of rural energy policies is divided into four distinct stages: a centrally planned economy (1949–1978), transiting from a planned economy to a market economy (1979–1996), dynamic development of the market economy system (1997–2006), and perfection of the market economy system (2007–2018). In parallel, rural energy policies have experienced four evolution stages of: stagnation, initial development, boom, and perfection. In each period, the characteristics and implementation effects of rural energy policies are analyzed. Three main policy instruments, including subsidies, rural electrification projects, and biogas projects are also assessed. The main results are as follows: (1) a comprehensive rural energy policy is lacking, and most policies are focused on techno-economic aspects; (2) most rural energy policies are problem-oriented and deficient in predictability; (3) the regional heterogeneity of rural residents' willingness and interests are not adequately considered in rural energy policies; (4) the current rural energy administrative system restricts the implementation of rural energy policies; and (5) the role of the energy market system has been overlooked. Finally, the paper provides corresponding policy implications.

Suggested Citation

  • Wu, Shu, 2020. "The evolution of rural energy policies in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307920
    DOI: 10.1016/j.rser.2019.109584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Le & Heerink, Nico & van den Berg, Marrit, 2006. "Energy consumption in rural China: A household model for three villages in Jiangxi Province," Ecological Economics, Elsevier, vol. 58(2), pages 407-420, June.
    2. Wang, Xiaojiao & Lu, Xingang & Yang, Gaihe & Feng, Yongzhong & Ren, Guangxin & Han, Xinhui, 2016. "Development process and probable future transformations of rural biogas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 703-712.
    3. Kenneth Y. Chay & Michael Greenstone, 2003. "The Impact of Air Pollution on Infant Mortality: Evidence from Geographic Variation in Pollution Shocks Induced by a Recession," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 1121-1167.
    4. Hongyun Han & Shu Wu, 2019. "Determinants of the Behavioral Lock-in of Rural Residents’ Direct Biomass Energy Consumption in China," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    5. Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
    6. McKitrick, Ross, 2017. "Global energy subsidies: An analytical taxonomy," Energy Policy, Elsevier, vol. 101(C), pages 379-385.
    7. Yang, Ming, 2003. "China's rural electrification and poverty reduction," Energy Policy, Elsevier, vol. 31(3), pages 283-295, February.
    8. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    9. Li, Canbing & He, Lina & Cao, Yijia & Xiao, Guoxuan & Zhang, Wei & Liu, Xiaohai & Yu, Zhicheng & Tan, Yi & Zhou, Jinju, 2014. "Carbon emission reduction potential of rural energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 254-262.
    10. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    11. He, Guizhen & Bluemling, Bettina & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Comparing centralized and decentralized bio-energy systems in rural China," Energy Policy, Elsevier, vol. 63(C), pages 34-43.
    12. Wuyuan Peng & Jiahua Pan, 2006. "Rural Electrification in China: History and Institution," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 14(1), pages 71-84, February.
    13. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    14. Luo, Guo-liang & Guo, Yi-wei, 2013. "Rural electrification in China: A policy and institutional analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 320-329.
    15. Krusekopf, Charles C., 2002. "Diversity in land-tenure arrangements under the household responsibility system in China," China Economic Review, Elsevier, vol. 13(2-3), pages 297-312.
    16. Zhang, Xilin & Kumar, Ashok, 2011. "Evaluating renewable energy-based rural electrification program in western China: Emerging problems and possible scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 773-779, January.
    17. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
    18. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    19. Li, Yan & Zhang, Qi & Wang, Ge & McLellan, Benjamin & Liu, Xue Fei & Wang, Le, 2018. "A review of photovoltaic poverty alleviation projects in China: Current status, challenge and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 214-223.
    20. Zhang, Lei & Qin, Quande & Wei, Yi-Ming, 2019. "China's distributed energy policies: Evolution, instruments and recommendation," Energy Policy, Elsevier, vol. 125(C), pages 55-64.
    21. Kong, Yigang & Wang, Jie & Kong, Zhigang & Song, Furong & Liu, Zhiqi & Wei, Congmei, 2015. "Small hydropower in China: The survey and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 425-433.
    22. Wang, Zhenyu & Fang, Shibiao & Chen, Xiaojian & Sun, Zhilin & Li, Fuqiang, 2015. "Rural hydropower renovation project implementation in China: A review of renovation planning, renovation schemes and guarantee mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 798-808.
    23. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    24. Ding, Haoyuan & Qin, Cong & Shi, Kang, 2018. "Development through electrification: Evidence from rural China," China Economic Review, Elsevier, vol. 50(C), pages 313-328.
    25. Catania, Peter, 1999. "China's rural energy system and management," Applied Energy, Elsevier, vol. 64(1-4), pages 229-240, September.
    26. Bhattacharyya, Subhes C. & Ohiare, Sanusi, 2012. "The Chinese electricity access model for rural electrification: Approach, experience and lessons for others," Energy Policy, Elsevier, vol. 49(C), pages 676-687.
    27. Kong, Yigang & Kong, Zhigang & Liu, Zhiqi & Wei, Congmei & An, Gaocheng, 2016. "Substituting small hydropower for fuel: The practice of China and the sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 978-991.
    28. Shan, Ming & Li, Dingkai & Jiang, Yi & Yang, Xudong, 2016. "Re-thinking china's densified biomass fuel policies: Large or small scale?," Energy Policy, Elsevier, vol. 93(C), pages 119-126.
    29. Liu, Junxia, 2019. "China's renewable energy law and policy: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 212-219.
    30. Mehetre, Sonam A. & Panwar, N.L. & Sharma, Deepak & Kumar, Himanshu, 2017. "Improved biomass cookstoves for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 672-687.
    31. Liao, Zhongju, 2016. "The evolution of wind energy policies in China (1995–2014): An analysis based on policy instruments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 464-472.
    32. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Jiashi & Zhang, Lei & Li, Yang, 2022. "Spatiotemporal analysis of rural energy transition and upgrading in developing countries: The case of China," Applied Energy, Elsevier, vol. 307(C).
    2. Ren, Yi-Shuai & Jiang, Yong & Narayan, Seema & Ma, Chao-Qun & Yang, Xiao-Guang, 2022. "Marketisation and rural energy poverty: Evidence from provincial panel data in China," Energy Economics, Elsevier, vol. 111(C).
    3. Binglu Wu & Di Mu & Yi Luo & Zhengguang Xiao & Jilong Zhao & Dongxu Cui, 2022. "Rural Ecological Problems in China from 2013 to 2022: A Review of Research Hotspots, Geographical Distribution, and Countermeasures," Land, MDPI, vol. 11(8), pages 1-22, August.
    4. Furmankiewicz, Marek & Hewitt, Richard J. & Kazak, Jan K., 2021. "Can rural stakeholders drive the low-carbon transition? Analysis of climate-related activities planned in local development strategies in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    6. Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
    7. He Li & Hua He & Jian Zhang, 2022. "Study on Rural Development Evaluation and Drivers of Sustainable Development: Evidence from the Beijing-Tianjin-Hebei Region of China," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    8. He, Ke & Ye, Lihong & Li, Fanlue & Chang, Huayi & Wang, Anbang & Luo, Sixuan & Zhang, Junbiao, 2022. "Using cognition and risk to explain the intention-behavior gap on bioenergy production: Based on machine learning logistic regression method," Energy Economics, Elsevier, vol. 108(C).
    9. Wu, Shu, 2022. "Household fuel switching and the elderly's health: Evidence from rural China," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    2. Bhattacharyya, Subhes C. & Ohiare, Sanusi, 2012. "The Chinese electricity access model for rural electrification: Approach, experience and lessons for others," Energy Policy, Elsevier, vol. 49(C), pages 676-687.
    3. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    4. Zhang, Lixiao & Pang, Mingyue & Bahaj, AbuBakr S. & Yang, Yongchuan & Wang, Changbo, 2021. "Small hydropower development in China: Growing challenges and transition strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    6. Hongyun Han & Shu Wu, 2019. "Determinants of the Behavioral Lock-in of Rural Residents’ Direct Biomass Energy Consumption in China," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    7. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    8. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    9. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    10. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    11. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    13. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    14. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    15. Zhang, Shuangqi & Deng, Mengsi & Shan, Ming & Zhou, Chuang & Liu, Wei & Xu, Xiaoqiu & Yang, Xudong, 2019. "Energy and environmental impact assessment of straw return and substitution of straw briquettes for heating coal in rural China," Energy Policy, Elsevier, vol. 128(C), pages 654-664.
    16. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.
    17. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    18. Wu, Shu, 2022. "Household fuel switching and the elderly's health: Evidence from rural China," Energy, Elsevier, vol. 240(C).
    19. Edwina Fingleton-Smith, 2022. "Smoke and mirrors—the complexities of cookstove adoption and use in Kenya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3926-3946, March.
    20. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.