IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v101y2019icp255-264.html
   My bibliography  Save this article

Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan

Author

Listed:
  • Yasmin, Nazia
  • Grundmann, Philipp

Abstract

Alternative energy technologies such as biogas are being promoted, but despite the significant potential and efforts to implement these technologies, only small numbers of households have succeeded in the transition towards these alternative energy sources. Moreover, sustainability and the functionality of alternative energy technologies remain unknown. The study aims to explore the socioeconomic constraints in the adoption and diffusion of biogas as alternative fuel for cooking in households in rural Pakistan and access the impact of biogas technology adoption on income, crop productivity and fuel consumption and drudgery. The study has also scrutinized the factors affecting the continuity of the biogas plants. Our analysis adds to the limited literature of adoption of biogas and the transition towards alternative fuel sources in the Global South. A multistage sampling procedure was used to collect data from 630 biogas adopters and non-adopters from three districts of Punjab. The empirical results from logit model and propensity score matching approach indicate that the older, wealthy farmers are more likely to adopt biogas technology. Cook's education, structure of house, location of kitchen and access to credit institutions also play positive role in this process. Poor operational methods, lack of maintenance and training facilities were the main reasons for the functional failure of existing plants and reason for the discontinuation. Moreover, biogas adoption has positive and significant impact on income and crop revenues and has negative impact on fuelwood expenditures and collection time. Due to the multidimensional nature of the problem, a comprehensive remedial approach addressing the socio-technical factors identified in the study and considering all stakeholders’ cooperation could solve the existing lock-in situation in the ongoing implementation of biogas production and the transition towards alternative fuel sources.

Suggested Citation

  • Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
  • Handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:255-264
    DOI: 10.1016/j.rser.2018.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    2. Li, Changjiang & Liao, Yuncheng & Wen, Xiaoxia & Wang, Yangfeng & Yang, Fei, 2015. "The development and countermeasures of household biogas in northwest grain for green project areas of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 835-846.
    3. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    4. Ahmad Romadhoni Surya Putra, R. & Liu, Zhen & Lund, Mogens, 2017. "The impact of biogas technology adoption for farm households – Empirical evidence from mixed crop and livestock farming systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1371-1378.
    5. Chavas, Jean-Paul & Holt, Matthew T, 1996. "Economic Behavior under Uncertainty: A Joint Analysis of Risk Preferences and Technology," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 329-335, May.
    6. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    7. Jain, Garima, 2010. "Energy security issues at household level in India," Energy Policy, Elsevier, vol. 38(6), pages 2835-2845, June.
    8. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    9. Madhusmita Dash & Bhagirath Behera & Dil Bahadur Rahut, 2018. "Understanding the factors that influence household use of clean energy in the Similipal Tiger Reserve, India," Natural Resources Forum, Blackwell Publishing, vol. 42(1), pages 3-18, February.
    10. Qu, Wei & Tu, Qin & Bluemling, Bettina, 2013. "Which factors are effective for farmers’ biogas use?–Evidence from a large-scale survey in China," Energy Policy, Elsevier, vol. 63(C), pages 26-33.
    11. Ali, Akhter & Bahadur Rahut, Dil & Behera, Bhagirath, 2016. "Factors influencing farmers׳ adoption of energy-based water pumps and impacts on crop productivity and household income in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 48-57.
    12. Zhou, Yuguang & Zhang, Zongxi & Zhang, Yixiang & Wang, Yungang & Yu, Yang & Ji, Fang & Ahmad, Riaz & Dong, Renjie, 2016. "A comprehensive review on densified solid biofuel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1412-1428.
    13. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    14. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    15. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    16. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    17. Mirza, Umar K. & Ahmad, Nasir & Harijan, Khanji & Majeed, Tariq, 2009. "Identifying and addressing barriers to renewable energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 927-931, May.
    18. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    19. Kabir, Humayun & Yegbemey, Rosaine N. & Bauer, Siegfried, 2013. "Factors determinant of biogas adoption in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 881-889.
    20. Ghimire, Prakash C., 2013. "SNV supported domestic biogas programmes in Asia and Africa," Renewable Energy, Elsevier, vol. 49(C), pages 90-94.
    21. Bedi, Arjun S. & Pellegrini, Lorenzo & Tasciotti, Luca, 2015. "The Effects of Rwanda’s Biogas Program on Energy Expenditure and Fuel Use," World Development, Elsevier, vol. 67(C), pages 461-474.
    22. Shan, Ming & Li, Dingkai & Jiang, Yi & Yang, Xudong, 2016. "Re-thinking china's densified biomass fuel policies: Large or small scale?," Energy Policy, Elsevier, vol. 93(C), pages 119-126.
    23. Yasar, Abdullah & Nazir, Saba & Tabinda, Amtul Bari & Nazar, Masooma & Rasheed, Rizwan & Afzaal, Muhammad, 2017. "Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: A case study from Pakistan," Renewable Energy, Elsevier, vol. 108(C), pages 19-25.
    24. Abadi, Nigussie & Gebrehiwot, Kindeya & Techane, Ataklti & Nerea, Hailish, 2017. "Links between biogas technology adoption and health status of households in rural Tigray, Northern Ethiopia," Energy Policy, Elsevier, vol. 101(C), pages 284-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasmin, Nazia & Grundmann, Philipp, 2020. "Home-cooked energy transitions: Women empowerment and biogas-based cooking technology in Pakistan," Energy Policy, Elsevier, vol. 137(C).
    2. Nazia Yasmin & Philipp Grundmann, 2019. "Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan," Energies, MDPI, vol. 12(16), pages 1-16, August.
    3. Huang, Xianlei & Wang, Shu & Shi, Zuliang & Fang, Linna & Yin, Changbin, 2022. "Challenges and strategies for biogas production in the circular agricultural waste utilization model: A case study in rural China," Energy, Elsevier, vol. 241(C).
    4. Rasool, Samma Faiz & Chin, Tachia & Wang, Mansi & Asghar, Ali & Khan, Anwar & Zhou, Li, 2022. "Exploring the role of organizational support, and critical success factors on renewable energy projects of Pakistan," Energy, Elsevier, vol. 243(C).
    5. Shu Wu, 2021. "The Health Impact of Household Cooking Fuel Choice on Women: Evidence from China," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    6. Muhammad U. Khan & Muhammad Ahmad & Muhammad Sultan & Ihsanullah Sohoo & Prakash C. Ghimire & Azlan Zahid & Abid Sarwar & Muhammad Farooq & Uzair Sajjad & Peyman Abdeshahian & Maryam Yousaf, 2021. "Biogas Production Potential from Livestock Manure in Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    7. Elahi, Ehsan & Khalid, Zainab & Zhang, Zhixin, 2022. "Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture," Applied Energy, Elsevier, vol. 309(C).
    8. Ahmad, Munir & Wu, Yiyun, 2022. "Household-based factors affecting uptake of biogas plants in Bangladesh: Implications for sustainable development," Renewable Energy, Elsevier, vol. 194(C), pages 858-867.
    9. Jabeen, Gul & Ahmad, Munir & Zhang, Qingyu, 2021. "Perceived critical factors affecting consumers’ intention to purchase renewable generation technologies: Rural-urban heterogeneity," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    2. Zeng, Yangmei & Zhang, Junbiao & He, Ke, 2019. "Effects of conformity tendencies on households’ willingness to adopt energy utilization of crop straw: Evidence from biogas in rural China," Renewable Energy, Elsevier, vol. 138(C), pages 573-584.
    3. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    4. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Huang, Xianlei & Wang, Shu & Shi, Zuliang & Fang, Linna & Yin, Changbin, 2022. "Challenges and strategies for biogas production in the circular agricultural waste utilization model: A case study in rural China," Energy, Elsevier, vol. 241(C).
    6. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    7. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    8. Talevi, Marta & Pattanayak, Subhrendu K. & Das, Ipsita & Lewis, Jessica J. & Singha, Ashok K., 2022. "Speaking from experience: Preferences for cooking with biogas in rural India," Energy Economics, Elsevier, vol. 107(C).
    9. Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
    10. Roubík, Hynek & Mazancová, Jana & Rydval, Jan & Kvasnička, Roman, 2020. "Uncovering the dynamic complexity of the development of small–scale biogas technology through causal loops," Renewable Energy, Elsevier, vol. 149(C), pages 235-243.
    11. Mengistu, Mulu Getachew & Simane, Belay & Eshete, Getachew & Workneh, Tilahun Seyoum, 2016. "Factors affecting households' decisions in biogas technology adoption, the case of Ofla and Mecha Districts, northern Ethiopia," Renewable Energy, Elsevier, vol. 93(C), pages 215-227.
    12. Nazia Yasmin & Philipp Grundmann, 2019. "Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan," Energies, MDPI, vol. 12(16), pages 1-16, August.
    13. Novice Patrick Bakehe, 2021. "What drives biogas adoption in rural Lesotho?," African Development Review, African Development Bank, vol. 33(2), pages 357-367, June.
    14. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    15. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    16. He, Pan & Veronesi, Marcella, 2017. "Personality traits and renewable energy technology adoption: A policy case study from China," Energy Policy, Elsevier, vol. 107(C), pages 472-479.
    17. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    18. He, Pan & Lovo, Stefania & Veronesi, Marcella, 2022. "Social networks and renewable energy technology adoption: Empirical evidence from biogas adoption in China," Energy Economics, Elsevier, vol. 106(C).
    19. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    20. Yasmin, Nazia & Grundmann, Philipp, 2020. "Home-cooked energy transitions: Women empowerment and biogas-based cooking technology in Pakistan," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:255-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.