IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp215-227.html
   My bibliography  Save this article

Factors affecting households' decisions in biogas technology adoption, the case of Ofla and Mecha Districts, northern Ethiopia

Author

Listed:
  • Mengistu, Mulu Getachew
  • Simane, Belay
  • Eshete, Getachew
  • Workneh, Tilahun Seyoum

Abstract

This study examined the factors that influence households' decisions on adoption of biogas technology in northern Ethiopia. It involved 179 biogas-user and 179 non-user sample households. They were selected using proportionate simple random and purposive sampling techniques, respectively. Data were collected mainly using semi-structured questionnaires. Data analyses employed logistic regression model. The results of the study showed that male-headed households are more likely to adopt the technology than female-headed ones. Educational level, heads of cattle, income level, access to credit, distance to the main fuelwood source, and number of planted trees have significant (p < 0.01) positive influences on adoption of biogas technology. Significant (p < 0.01) spatial variations are also obtained between the two study sites. Furthermore, the interaction effects of a few pairs of explanatory variables were found significant (p < 0.1). Empowering females and female-headed households, improving educational levels of the household heads, increasing cattle size, raising income levels, improving access to credit, and encouraging households to plant more trees are likely to be some of the way forward to increase the adoption of the technology. Considering the spatial variations, ensuring the creation of satisfied biogas-users, upgrading the existing biogas model through addition of ‘injera’ stove can also enhance adoption of biogas technology.

Suggested Citation

  • Mengistu, Mulu Getachew & Simane, Belay & Eshete, Getachew & Workneh, Tilahun Seyoum, 2016. "Factors affecting households' decisions in biogas technology adoption, the case of Ofla and Mecha Districts, northern Ethiopia," Renewable Energy, Elsevier, vol. 93(C), pages 215-227.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:215-227
    DOI: 10.1016/j.renene.2016.02.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    2. Gebreegziabher, Zenebe & van Kooten, G. Cornelis, 2013. "Does community and household tree planting imply increased use of wood for fuel? Evidence from Ethiopia," Forest Policy and Economics, Elsevier, vol. 34(C), pages 30-40.
    3. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    4. Negash, Martha & Swinnen, Johan F.M., 2013. "Biofuels and food security: Micro-evidence from Ethiopia," Energy Policy, Elsevier, vol. 61(C), pages 963-976.
    5. Abebe, Gumataw K. & Bijman, Jos & Pascucci, Stefano & Omta, Onno, 2013. "Adoption of improved potato varieties in Ethiopia: The role of agricultural knowledge and innovation system and smallholder farmers’ quality assessment," Agricultural Systems, Elsevier, vol. 122(C), pages 22-32.
    6. Feleke, Shiferaw & Zegeye, Tesfaye, 2006. "Adoption of improved maize varieties in Southern Ethiopia: Factors and strategy options," Food Policy, Elsevier, vol. 31(5), pages 442-457, October.
    7. Lim, Sung Soo & Winter-Nelson, Alex & Arends-Kuenning, Mary, 2007. "Household Bargaining Power and Agricultural Supply Response: Evidence from Ethiopian Coffee Growers," World Development, Elsevier, vol. 35(7), pages 1204-1220, July.
    8. Papadimitriou, Theophilos & Gogas, Periklis & Stathakis, Efthimios, 2014. "Forecasting energy markets using support vector machines," Energy Economics, Elsevier, vol. 44(C), pages 135-142.
    9. Gwavuya, S.G. & Abele, S. & Barfuss, I. & Zeller, M. & Müller, J., 2012. "Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy," Renewable Energy, Elsevier, vol. 48(C), pages 202-209.
    10. Cramer,J. S., 2011. "Logit Models from Economics and Other Fields," Cambridge Books, Cambridge University Press, number 9780521188036.
    11. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    12. Abebaw, Degnet & Haile, Mekbib G., 2013. "The impact of cooperatives on agricultural technology adoption: Empirical evidence from Ethiopia," Food Policy, Elsevier, vol. 38(C), pages 82-91.
    13. Qu, Wei & Tu, Qin & Bluemling, Bettina, 2013. "Which factors are effective for farmers’ biogas use?–Evidence from a large-scale survey in China," Energy Policy, Elsevier, vol. 63(C), pages 26-33.
    14. Bekele, Wagayehu & Drake, Lars, 2003. "Soil and water conservation decision behavior of subsistence farmers in the Eastern Highlands of Ethiopia: a case study of the Hunde-Lafto area," Ecological Economics, Elsevier, vol. 46(3), pages 437-451, October.
    15. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    16. Bhatia, Ramesh, 1990. "Diffusion of renewable energy technologies in developing countries: A case study of biogas engines in India," World Development, Elsevier, vol. 18(4), pages 575-590, April.
    17. Rasmus Heltberg & Thomas Channing Arndt & Nagothu Udaya Sekhar, 2000. "Fuelwood Consumption and Forest Degradation: A Household Model for Domestic Energy Substitution in Rural India," Land Economics, University of Wisconsin Press, vol. 76(2), pages 213-232.
    18. Beyene, Abebe D. & Koch, Steven F., 2013. "Property rights, institutions and choice of fuelwood source in rural Ethiopia," Forest Policy and Economics, Elsevier, vol. 30(C), pages 30-38.
    19. Kabir, Humayun & Yegbemey, Rosaine N. & Bauer, Siegfried, 2013. "Factors determinant of biogas adoption in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 881-889.
    20. Ghimire, Prakash C., 2013. "SNV supported domestic biogas programmes in Asia and Africa," Renewable Energy, Elsevier, vol. 49(C), pages 90-94.
    21. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    22. World Bank, 2014. "The Little Green Data Book 2014," World Bank Publications - Books, The World Bank Group, number 18782, December.
    23. World Bank, 2014. "The Little Data Book 2014," World Bank Publications - Books, The World Bank Group, number 18238, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Yangmei & Zhang, Junbiao & He, Ke, 2019. "Effects of conformity tendencies on households’ willingness to adopt energy utilization of crop straw: Evidence from biogas in rural China," Renewable Energy, Elsevier, vol. 138(C), pages 573-584.
    2. Loos, T. & Sariyev, O. & Zeller, M., 2018. "The effect of gendered decision-making considering all household members on the adoption of crop rotation and livelihood outcomes in Ethiopia," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277120, International Association of Agricultural Economists.
    3. Zohaib Ur Rehman Afridi & Wu Jing & Hassan Younas, 2019. "Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    4. Grace B. Villamor, 2023. "Gender and Water-Energy-Food Nexus in the Rural Highlands of Ethiopia: Where Are the Trade-Offs?," Land, MDPI, vol. 12(3), pages 1-20, February.
    5. Meiying Xie & Xiang Cai & Zhengli Xu & Nan Zhou & Dongqing Yan, 2022. "Factors contributing to abandonment of household biogas digesters in rural China: a study of stakeholder perspectives using Q-methodology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7698-7724, June.
    6. Wassie, Yibeltal T. & Adaramola, Muyiwa S., 2019. "Potential environmental impacts of small-scale renewable energy technologies in East Africa: A systematic review of the evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 377-391.
    7. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    8. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    9. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    10. Solomon E. Uhunamure & Nthaduleni S. Nethengwe & David Tinarwo, 2021. "Development of a Comprehensive Conceptual Framework for Biogas Technology Adoption in South Africa," Resources, MDPI, vol. 10(8), pages 1-21, July.
    11. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    12. Aine Petrulaityte & Fabrizio Ceschin & Josephine Kaviti Musango & Betty Karimi Mwiti & Christer Anditi & Peris Njoroge, 2022. "Supporting the Development of Gendered Energy Innovations for Informal Urban Settlements: GENS Codesign Toolkit for Multistakeholder Collaboration," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    13. Li, Yanjiao & Qing, Chen & Guo, Shili & Deng, Xin & Song, Jiahao & Xu, Dingde, 2023. "When my friends and relatives go solar, should I go solar too? —— Evidence from rural Sichuan province, China," Renewable Energy, Elsevier, vol. 203(C), pages 753-762.
    14. Tafadzwa Clementine Maramura & Eugine Tafadzwa Maziriri & Tinashe Chuchu & David Mago & Rumbidzai Mazivisa, 2020. "Renewable Energy Access Challenge at Household Level for the Poor in Rural Zimbabwe: Is Biogas Energy a Remedy?," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 282-292.
    15. Uhunamure, S.E. & Nethengwe, N.S. & Tinarwo, D., 2019. "Correlating the factors influencing household decisions on adoption and utilisation of biogas technology in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 264-273.
    16. Novice Patrick Bakehe, 2021. "What drives biogas adoption in rural Lesotho?," African Development Review, African Development Bank, vol. 33(2), pages 357-367, June.
    17. Abbas, Tahir & Ali, Ghaffar & Adil, Sultan Ali & Bashir, Muhammad Khalid & Kamran, Muhammad Asif, 2017. "Economic analysis of biogas adoption technology by rural farmers: The case of Faisalabad district in Pakistan," Renewable Energy, Elsevier, vol. 107(C), pages 431-439.
    18. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    19. Guta, Dawit Diriba, 2020. "Determinants of household use of energy-efficient and renewable energy technologies in rural Ethiopia," Technology in Society, Elsevier, vol. 61(C).
    20. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    2. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    3. Uhunamure, S.E. & Nethengwe, N.S. & Tinarwo, D., 2019. "Correlating the factors influencing household decisions on adoption and utilisation of biogas technology in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 264-273.
    4. Mengistu, M.G. & Simane, B. & Eshete, G. & Workneh, T.S., 2015. "A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 306-316.
    5. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    6. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    7. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    8. Novice Patrick Bakehe, 2021. "What drives biogas adoption in rural Lesotho?," African Development Review, African Development Bank, vol. 33(2), pages 357-367, June.
    9. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    10. Alberto Regattieri & Marco Bortolini & Emilio Ferrari & Mauro Gamberi & Francesco Piana, 2018. "Biogas Micro-Production from Human Organic Waste—A Research Proposal," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    11. Liu, Ziming & Li, Jia & Rommel, Jens & Feng, Shuyi, 2020. "Health impacts of cooking fuel choice in rural China," Energy Economics, Elsevier, vol. 89(C).
    12. Anne M. Cafer & J. Sanford Rikoon, 2018. "Adoption of new technologies by smallholder farmers: the contributions of extension, research institutes, cooperatives, and access to cash for improving tef production in Ethiopia," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 35(3), pages 685-699, September.
    13. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    14. Martí-Herrero, Jaime & Chipana, Maria & Cuevas, Carlos & Paco, Gabriel & Serrano, Victor & Zymla, Bernhard & Heising, Klas & Sologuren, Jaime & Gamarra, Alba, 2014. "Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia," Renewable Energy, Elsevier, vol. 71(C), pages 156-165.
    15. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.
    16. Nazia Yasmin & Philipp Grundmann, 2019. "Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan," Energies, MDPI, vol. 12(16), pages 1-16, August.
    17. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    18. Musa Hasen Ahmed & Kassahun Mamo Geleta & Aemro Tazeze & Hiwot Mekonnen Mesfin & Eden Andualem Tilahun, 2017. "Cropping systems diversification, improved seed, manure and inorganic fertilizer adoption by maize producers of eastern Ethiopia," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-16, December.
    19. Samira Salam & Rehena Parveen & S.M. Nasim Azad & Md. Abdus Salam, 2020. "Understanding the Performance of Domestic Biodigesters in Bangladesh: A Study from Household Level Survey," Business and Management Studies, Redfame publishing, vol. 6(2), pages 2739-2739, December.
    20. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:215-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.