IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4443-d258375.html
   My bibliography  Save this article

Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge

Author

Listed:
  • Zohaib Ur Rehman Afridi

    (US Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology (UET), Peshawar 25000, Pakistan)

  • Wu Jing

    (School of Environment, Tsinghua University, Beijing 100084, China)

  • Hassan Younas

    (The State Key Laboratory of Materials Oriented Separations, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China)

Abstract

Anaerobic granules are responsible for organic degradation and biogas production in a reactor. The biogas production is entirely dependent on a mass transfer mechanism, but so far, the fundamental understanding remains poor due to the covered surface of the reactor. The study aimed at investigating the fundamental mass transfer characteristics of single anaerobic granules of different sizes using microscopic imaging and analytical monitoring under single and different organic loadings. The experiment was conducted in a micro reactor and mass transfer was calculated using modified Fick’s law. Scanning electron microscopy was applied to observe biogas production zones in the granule, and a lab-scale microscope equipped with a camera revealed the biogas bubble detachment process in the micro reactor for the first time. In this experiment, the granule size was 1.32, 1.47, and 1.75 mm, but 1.75 mm granules were chosen for further investigation due to their large size. The results revealed that biogas production rates for 1.75 mm granules at initial Chemical Oxygen Demand (COD) 586, 1700, and 6700 mg/L were 0.0108, 0.0236, and 0.1007 m 3 /kg COD, respectively; whereas the mass transfer rates were calculated as 1.83 × 10 −12 , 5.30 × 10 −12 , and 2.08 × 10 −11 mg/s. It was concluded that higher organic loading and large granules enhance the mass transfer inside the reactor. Thus, large granules should be preferred in the granule-based reactor to enhance biogas production.

Suggested Citation

  • Zohaib Ur Rehman Afridi & Wu Jing & Hassan Younas, 2019. "Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4443-:d:258375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shengrong Xue & Nan Zhao & Jinghui Song & Xiaojiao Wang, 2019. "Interactive Effects of Chemical Composition of Food Waste during Anaerobic Co-Digestion under Thermophilic Temperature," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    2. Swati Hegde & Thomas A. Trabold, 2019. "Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    3. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    4. Massimo Raboni & Renato Gavasci & Giordano Urbini, 2014. "UASB followed by Sub-Surface Horizontal Flow Phytodepuration for the Treatment of the Sewage Generated by a Small Rural Community," Sustainability, MDPI, vol. 6(10), pages 1-15, October.
    5. Weidong Huang, 2015. "An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy," Sustainability, MDPI, vol. 7(1), pages 1-15, January.
    6. Mengistu, Mulu Getachew & Simane, Belay & Eshete, Getachew & Workneh, Tilahun Seyoum, 2016. "Factors affecting households' decisions in biogas technology adoption, the case of Ofla and Mecha Districts, northern Ethiopia," Renewable Energy, Elsevier, vol. 93(C), pages 215-227.
    7. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jolita Kruopienė & Miglė Žiukaitė, 2022. "Situation Analysis and the Potential for Circularity of the Wastewater Sector in Lithuania," Sustainability, MDPI, vol. 14(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    2. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    3. Notodarmojo, Peni Astrini & Fujiwara, Takeshi & Habuer, & Pham Van, Dinh, 2022. "Effectiveness of oyster shell as alkali additive for two-stage anaerobic co-digestion: Carbon flow analysis," Energy, Elsevier, vol. 239(PC).
    4. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    5. Stefan Heiske & Linas Jurgutis & Zsófia Kádár, 2015. "Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters," Energies, MDPI, vol. 8(3), pages 1-15, March.
    6. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    7. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    8. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    9. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    10. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    11. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    14. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    15. Mengistu, M.G. & Simane, B. & Eshete, G. & Workneh, T.S., 2015. "A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 306-316.
    16. Juan M. Castano & Jay F. Martin & Richard Ciotola, 2014. "Performance of a Small-Scale, Variable Temperature Fixed Dome Digester in a Temperate Climate," Energies, MDPI, vol. 7(9), pages 1-16, September.
    17. Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
    18. Zealand, A.M. & Roskilly, A.P. & Graham, D.W., 2017. "Effect of feeding frequency and organic loading rate on biomethane production in the anaerobic digestion of rice straw," Applied Energy, Elsevier, vol. 207(C), pages 156-165.
    19. Meiying Xie & Xiang Cai & Zhengli Xu & Nan Zhou & Dongqing Yan, 2022. "Factors contributing to abandonment of household biogas digesters in rural China: a study of stakeholder perspectives using Q-methodology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7698-7724, June.
    20. Gudina Terefe Tucho & Henri C. Moll & Anton J. M. Schoot Uiterkamp & Sanderine Nonhebel, 2016. "Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements," Energies, MDPI, vol. 9(9), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4443-:d:258375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.