IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2984-d179811.html
   My bibliography  Save this article

A Review of Commercial Biogas Systems and Lessons for Africa

Author

Listed:
  • Francis Kemausuor

    (Department of Agricultural and Biosystems Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
    The Brew-Hammond Energy Center, KNUST, Kumasi, Ghana
    Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433 Ås, Norway)

  • Muyiwa S. Adaramola

    (Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433 Ås, Norway)

  • John Morken

    (Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway)

Abstract

Many African countries have vast biomass resources that could serve as feedstock for methane production through the adoption of commercial biogas plants. However, due to many inhibiting factors, these resources are under-utilised. This article reviews commercial biogas systems that treat organic waste from municipalities, large livestock farms, large plantations/crop farms, food/beverage production facilities, and other industries, to identify essential lessons which African countries could use to develop/disseminate such biogas systems. The review identified the critical barriers to commercial biogas development to be high initial capital costs, weak environmental policies, poor institutional framework, poor infrastructure and a general lack of willpower to implement renewable energy policies and set challenging targets. In African countries where feed-in-tariffs, quota obligations and competitive bidding programmes have been instituted, implementation has been poor, and most state-owned utilities have been unsupportive. Using knowledge from more experienced countries such as Germany and China, some key lessons have were identified. Among the key lessons is the need to institute and enforce environmental management policies to ensure that waste from medium and large livestock farms and industries are not disposed of indiscriminately, a tool China has recently used to promote commercial biogas plants to a high degree of success.

Suggested Citation

  • Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2984-:d:179811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wirba, Asan Vernyuy & Abubakar Mas'ud, Abdullahi & Muhammad-Sukki, Firdaus & Ahmad, Salman & Mat Tahar, Razman & Abdul Rahim, Ruzairi & Munir, Abu Bakar & Karim, Md Ershadul, 2015. "Renewable energy potentials in Cameroon: Prospects and challenges," Renewable Energy, Elsevier, vol. 76(C), pages 560-565.
    2. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    3. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    4. Poeschl, Martina & Ward, Shane & Owende, Philip, 2010. "Prospects for expanded utilization of biogas in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1782-1797, September.
    5. B. Lutge & B. Standish, 2013. "Assessing the potential for electricity generation from animal waste biogas on South African farms," Agrekon, Taylor & Francis Journals, vol. 52(2), pages 1-24, June.
    6. Kemausuor, Francis & Nygaard, Ivan & Mackenzie, Gordon, 2015. "Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model," Energy, Elsevier, vol. 93(P1), pages 672-682.
    7. Anh Sam & Xiang Bi & Derek Farnsworth, 2017. "How Incentives Affect the Adoption of Anaerobic Digesters in the United States," Sustainability, MDPI, vol. 9(7), pages 1-14, July.
    8. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    9. Anton Eberhard & Katharine Gratwick & Elvira Morella & Pedro Antmann, 2016. "Independent Power Projects in Sub-Saharan Africa," World Bank Publications - Books, The World Bank Group, number 23970, December.
    10. Buysman, Eric & Mol, Arthur P.J., 2013. "Market-based biogas sector development in least developed countries —The case of Cambodia," Energy Policy, Elsevier, vol. 63(C), pages 44-51.
    11. Mutungwazi, Asheal & Mukumba, Patrick & Makaka, Golden, 2018. "Biogas digester types installed in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 172-180.
    12. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    13. Walwyn, David Richard & Brent, Alan Colin, 2015. "Renewable energy gathers steam in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 390-401.
    14. Gudina Terefe Tucho & Henri C. Moll & Anton J. M. Schoot Uiterkamp & Sanderine Nonhebel, 2016. "Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements," Energies, MDPI, vol. 9(9), pages 1-16, September.
    15. Tobias Heffels & Russell McKenna & Wolf Fichtner, 2012. "Direct marketing of electricity from biogas and biomethane: an economic analysis of several business models in Germany," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 23(1), pages 53-70, September.
    16. Shrimali, Gireesh & Srinivasan, Sandhya & Goel, Shobhit & Nelson, David, 2017. "The effectiveness of federal renewable policies in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 538-550.
    17. Namsaraev, Z.B. & Gotovtsev, P.M. & Komova, A.V. & Vasilov, R.G., 2018. "Current status and potential of bioenergy in the Russian Federation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 625-634.
    18. Murphy, Patrick Mark & Twaha, Ssennoga & Murphy, Inês S., 2014. "Analysis of the cost of reliable electricity: A new method for analyzing grid connected solar, diesel and hybrid distributed electricity systems considering an unreliable electric grid, with examples ," Energy, Elsevier, vol. 66(C), pages 523-534.
    19. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    20. Budych-Gorzna, Magdalena & Smoczynski, Marcin & Oleskowicz-Popiel, Piotr, 2016. "Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste," Applied Energy, Elsevier, vol. 161(C), pages 387-394.
    21. Gyamfi, Samuel & Modjinou, Mawufemo & Djordjevic, Sinisa, 2015. "Improving electricity supply security in Ghana—The potential of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1035-1045.
    22. Becker, Bastian & Fischer, Doris, 2013. "Promoting renewable electricity generation in emerging economies," Energy Policy, Elsevier, vol. 56(C), pages 446-455.
    23. Aliyu, Abubakar Sadiq & Ramli, Ahmad Termizi & Saleh, Muneer Aziz, 2013. "Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications," Energy, Elsevier, vol. 61(C), pages 354-367.
    24. Mohammed, M. & Egyir, I. S. & Donkor, A. K. & Amoah, Philip & Nyarko, S. & Boateng, K. K. & Ziwu, C., "undated". "Feasibility study for biogas integration into waste treatment plants in Ghana," Papers published in Journals (Open Access) H047916, International Water Management Institute.
    25. Ahmad Dar, Rouf & Ahmad Dar, Eajaz & Kaur, Ajit & Gupta Phutela, Urmila, 2018. "Sweet sorghum-a promising alternative feedstock for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4070-4090.
    26. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    27. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    28. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    29. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    30. Janaina Camile Pasqual & Harry Alberto Bollmann & Christopher A. Scott & Thiago Edwiges & Thais Carlini Baptista, 2018. "Assessment of Collective Production of Biomethane from Livestock Waste for Urban Transportation Mobility in Brazil and the United States," Energies, MDPI, vol. 11(4), pages 1-19, April.
    31. Trimble,Christopher Philip & Kojima,Masami & Perez Arroyo,Ines & Mohammadzadeh,Farah, 2016. "Financial viability of electricity sectors in Sub-Saharan Africa : quasi-fiscal deficits and hidden costs," Policy Research Working Paper Series 7788, The World Bank.
    32. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    33. Kuldeep Ojha, 2011. "Status of MSW management system in northern India-an overview," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(1), pages 203-215, February.
    34. Chen, Yu & Yang, Gaihe & Sweeney, Sandra & Feng, Yongzhong, 2010. "Household biogas use in rural China: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 545-549, January.
    35. Tobias Schmidt & Sandeep Dabur, 2014. "Explaining the diffusion of biogas in India: a new functional approach considering national borders and technology transfer," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(2), pages 171-199, April.
    36. Pueyo, Ana, 2018. "What constrains renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana," World Development, Elsevier, vol. 109(C), pages 85-100.
    37. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    38. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    39. Kinyua, Maureen N. & Rowse, Laurel E. & Ergas, Sarina J., 2016. "Review of small-scale tubular anaerobic digesters treating livestock waste in the developing world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 896-910.
    40. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    41. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    42. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    43. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Kiriamiti, Henry & van Langenhove, Herman, 2010. "Biowaste energy potential in Kenya," Renewable Energy, Elsevier, vol. 35(12), pages 2698-2704.
    44. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
    45. Patrick Mukumba & Golden Makaka & Sampson Mamphweli, 2016. "Biogas Technology in South Africa, Problems, Challenges and Solutions," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 5(4), pages 58-69.
    46. Ghimire, Prakash C., 2013. "SNV supported domestic biogas programmes in Asia and Africa," Renewable Energy, Elsevier, vol. 49(C), pages 90-94.
    47. Pablo-Romero, María del P. & Sánchez-Braza, Antonio & Salvador-Ponce, Jesús & Sánchez-Labrador, Natalia, 2017. "An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1366-1379.
    48. Kiplagat, J.K. & Wang, R.Z. & Li, T.X., 2011. "Renewable energy in Kenya: Resource potential and status of exploitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2960-2973, August.
    49. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    50. Claudinei De Souza Guimarães & David Rodrigues da Silva Maia & Eduardo Gonçalves Serra, 2018. "Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage," Energies, MDPI, vol. 11(4), pages 1-10, April.
    51. Hamid, R.G. & Blanchard, R.E., 2018. "An assessment of biogas as a domestic energy source in rural Kenya: Developing a sustainable business model," Renewable Energy, Elsevier, vol. 121(C), pages 368-376.
    52. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.
    53. Tasnim, Farzana & Iqbal, Salma A. & Chowdhury, Aminur Rashid, 2017. "Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth," Renewable Energy, Elsevier, vol. 109(C), pages 434-439.
    54. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    55. Patrick Mukumba & Golden Makaka & Sampson Mamphweli, 2016. "Biogas Technology in South Africa, Problems, Challenges and Solutions," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 5(4), pages 58-69.
    56. Kristine Bos & Duncan Chaplin & Arif Mamun, "undated". "Benefits and Challenges of Expanding Grid Electricity in Africa: A Review of Rigorous Evidence on Household Impacts in Developing Countries," Mathematica Policy Research Reports 4df837297b3a490e922d53edf, Mathematica Policy Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamila Klimek & Magdalena Kapłan & Serhiy Syrotyuk & Nikolay Bakach & Nikolay Kapustin & Ryszard Konieczny & Jakub Dobrzyński & Kinga Borek & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & Grzeg, 2021. "Investment Model of Agricultural Biogas Plants for Individual Farms in Poland," Energies, MDPI, vol. 14(21), pages 1-30, November.
    2. Eggemann, Lea & Rau, Florian & Stolten, Detlef, 2023. "The ecological potential of manure utilisation in small-scale biogas plants," Applied Energy, Elsevier, vol. 331(C).
    3. Bundhoo, Zumar M.A. & Surroop, Dinesh, 2019. "Evaluation of the potential of bio-methane production from field-based crop residues in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    5. Lisandra Rocha-Meneses & Oghenetejiri Frances Otor & Nemailla Bonturi & Kaja Orupõld & Timo Kikas, 2019. "Bioenergy Yields from Sequential Bioethanol and Biomethane Production: An Optimized Process Flow," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    6. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    7. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Design and Employing of a Non-Linear Response Surface Model to Predict the Microbial Loads in Anaerobic Digestion of Cow Manure: Batch Balloon Digester," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    8. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    9. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    10. Batara Surya & Andi Muhibuddin & Seri Suriani & Emil Salim Rasyidi & Baharuddin Baharuddin & Andi Tenri Fitriyah & Herminawaty Abubakar, 2021. "Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia," Sustainability, MDPI, vol. 13(3), pages 1-45, January.
    11. Mairi J. Black & Amitava Roy & Edson Twinomunuji & Francis Kemausuor & Richard Oduro & Matthew Leach & Jhuma Sadhukhan & Richard Murphy, 2021. "Bottled Biogas—An Opportunity for Clean Cooking in Ghana and Uganda," Energies, MDPI, vol. 14(13), pages 1-14, June.
    12. Nii Nelson & Jo Darkwa & John Calautit & Mark Worall & Robert Mokaya & Eunice Adjei & Francis Kemausuor & Julius Ahiekpor, 2021. "Potential of Bioenergy in Rural Ghana," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
    13. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    14. Rufis Fregue Tiegam Tagne & Xiaobin Dong & Solomon G. Anagho & Serena Kaiser & Sergio Ulgiati, 2021. "Technologies, challenges and perspectives of biogas production within an agricultural context. The case of China and Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14799-14826, October.
    15. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Christopher Schmid & Thomas Horschig & Alexandra Pfeiffer & Nora Szarka & Daniela Thrän, 2019. "Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries," Energies, MDPI, vol. 12(19), pages 1-24, October.
    17. Chipo Shonhiwa & Yolanda Mapantsela & Golden Makaka & Patrick Mukumba & Ngwarai Shambira, 2023. "Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review," Energies, MDPI, vol. 16(14), pages 1-20, July.
    18. Kimball C. Chen & Matthew Leach & Mairi J. Black & Meron Tesfamichael & Francis Kemausuor & Patrick Littlewood & Terry Marker & Onesmus Mwabonje & Yacob Mulugetta & Richard J. Murphy & Rocio Diaz-Chav, 2021. "BioLPG for Clean Cooking in Sub-Saharan Africa: Present and Future Feasibility of Technologies, Feedstocks, Enabling Conditions and Financing," Energies, MDPI, vol. 14(13), pages 1-22, June.
    19. Krzysztof Zamasz & Radosław Kapłan & Przemysław Kaszyński & Piotr W. Saługa, 2020. "An Analysis of Support Mechanisms for New CHPs: The Case of Poland," Energies, MDPI, vol. 13(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    2. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    4. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    5. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    7. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    8. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    9. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    10. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    11. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    12. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    13. Raha, Debadayita & Mahanta, Pinakeswar & Clarke, Michèle L., 2014. "The implementation of decentralised biogas plants in Assam, NE India: The impact and effectiveness of the National Biogas and Manure Management Programme," Energy Policy, Elsevier, vol. 68(C), pages 80-91.
    14. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    15. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    17. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Ferrer-Martí, Laia & Ferrer, Ivet & Sánchez, Elena & Garfí, Marianna, 2018. "A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 74-83.
    19. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    20. Abdullahi Abubakar Mas’ud & Asan Vernyuy Wirba & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Álvaro Jaramillo Duque & Nurul Aini Bani & Abu Bakar Munir, 2017. "Wind Power Potentials in Cameroon and Nigeria: Lessons from South Africa," Energies, MDPI, vol. 10(4), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2984-:d:179811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.