IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v121y2018icp368-376.html
   My bibliography  Save this article

An assessment of biogas as a domestic energy source in rural Kenya: Developing a sustainable business model

Author

Listed:
  • Hamid, R.G.
  • Blanchard, R.E.

Abstract

Energy poverty in the majority of the rural households in Kenya is a threat to economic and social development; hence the availability of an affordable and reliable domestic energy source is important. This study investigated: the potential resources for biogas for cooking, suitable anaerobic digesters that could be deployed in rural households, and also the viability of a small community biogas business model. Conservative estimates of the business model parameters and sensitivity analysis revealed that there was adequate biogas potential in central and western Kenya while water scarcity affected other regions' opportunities. Cattle manure was the predominant feedstock, although crop waste has possibilities to contribute to biogas production. Economically and technically, the inflatable tubular digester was found to be the most suitable type for biogas production in rural Kenya. Discounted cash flow analysis of the business model proved a profitable business to supply an affordable household energy at 0.55€/Kg of biogas, with projected household savings of 249€ annually. Labor cost was found to have high significance on the feasibility of the business model which was also sensitive to changes in biogas revenues. Kenya's rural areas have significant biogas potential to reduce energy poverty, generate income and aid social development.

Suggested Citation

  • Hamid, R.G. & Blanchard, R.E., 2018. "An assessment of biogas as a domestic energy source in rural Kenya: Developing a sustainable business model," Renewable Energy, Elsevier, vol. 121(C), pages 368-376.
  • Handle: RePEc:eee:renene:v:121:y:2018:i:c:p:368-376
    DOI: 10.1016/j.renene.2018.01.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118300314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattacharya, S.C. & Thomas, Jossy M. & Abdul Salam, P., 1997. "Greenhouse gas emissions and the mitigation potential of using animal wastes in Asia," Energy, Elsevier, vol. 22(11), pages 1079-1085.
    2. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    3. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Kiriamiti, Henry & van Langenhove, Herman, 2010. "Biowaste energy potential in Kenya," Renewable Energy, Elsevier, vol. 35(12), pages 2698-2704.
    4. Kiplagat, J.K. & Wang, R.Z. & Li, T.X., 2011. "Renewable energy in Kenya: Resource potential and status of exploitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2960-2973, August.
    5. Sovacool, Benjamin K. & Kryman, Matthew & Smith, Taylor, 2015. "Scaling and commercializing mobile biogas systems in Kenya: A qualitative pilot study," Renewable Energy, Elsevier, vol. 76(C), pages 115-125.
    6. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Tuigong, David & Kiriamiti, Henry & van Langenhove, Herman, 2012. "Multi criteria sustainability assessment of biogas production in Kenya," Applied Energy, Elsevier, vol. 93(C), pages 496-506.
    7. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Yangmei & Zhang, Junbiao & He, Ke, 2019. "Effects of conformity tendencies on households’ willingness to adopt energy utilization of crop straw: Evidence from biogas in rural China," Renewable Energy, Elsevier, vol. 138(C), pages 573-584.
    2. Gill-Wiehl, A. & Ray, I. & Kammen, D., 2021. "Is clean cooking affordable? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. He, Ke & Zhang, Junbiao & Wang, Anbang & Chang, Huayi, 2020. "Rural households’ perceived value of energy utilization of crop residues: A case study from China," Renewable Energy, Elsevier, vol. 155(C), pages 286-295.
    4. Yun, Na, 2023. "Nexus among carbon intensity and natural resources utilization on economic development: Econometric analysis from China," Resources Policy, Elsevier, vol. 83(C).
    5. Angelique Mukasine & Louis Sibomana & Kayalvizhi Jayavel & Kizito Nkurikiyeyezu & Eric Hitimana, 2023. "Correlation Analysis Model of Environment Parameters Using IoT Framework in a Biogas Energy Generation Context," Future Internet, MDPI, vol. 15(8), pages 1-14, August.
    6. Carvalho, Ricardo L. & Lindgren, Robert & García-López, Natxo & Nyambane, Anne & Nyberg, Gert & Diaz-Chavez, Rocio & Boman, Christoffer, 2019. "Household air pollution mitigation with integrated biomass/cookstove strategies in Western Kenya," Energy Policy, Elsevier, vol. 131(C), pages 168-186.
    7. Marc Kalina & Jonathan Òlal Ogwang & Elizabeth Tilley, 2022. "From potential to practice: rethinking Africa’s biogas revolution," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-5, December.
    8. Nazia Yasmin & Philipp Grundmann, 2019. "Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan," Energies, MDPI, vol. 12(16), pages 1-16, August.
    9. Karanja, Alice & Gasparatos, Alexandros, 2019. "Adoption and impacts of clean bioenergy cookstoves in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 285-306.
    10. Liang, Shuai & Wang, Peng & Jia, Cunlu & Zhu, Jialan, 2023. "Studying green financing, factor allocation efficiency, and regional productivity growth in renewable energy industries," Renewable Energy, Elsevier, vol. 214(C), pages 130-139.
    11. Zhang, Dong & Zheng, Yu & Wu, Jianghao & Li, Bingyang & Li, Jinping, 2020. "Annual energy characteristics and thermodynamic evaluation of combined heating, power and biogas system in cold rural area of Northwest China," Energy, Elsevier, vol. 192(C).
    12. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Design and Employing of a Non-Linear Response Surface Model to Predict the Microbial Loads in Anaerobic Digestion of Cow Manure: Batch Balloon Digester," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    13. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    14. Ahmad, Munir & Khan, Irfan & Shahzad Khan, Muhammad Qaiser & Jabeen, Gul & Jabeen, Hafiza Samra & Işık, Cem, 2023. "Households' perception-based factors influencing biogas adoption: Innovation diffusion framework," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karanja, Alice & Gasparatos, Alexandros, 2019. "Adoption and impacts of clean bioenergy cookstoves in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 285-306.
    2. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    3. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    4. Ferrer-Martí, Laia & Ferrer, Ivet & Sánchez, Elena & Garfí, Marianna, 2018. "A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 74-83.
    5. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    6. Ghaem Sigarchian, Sara & Paleta, Rita & Malmquist, Anders & Pina, André, 2015. "Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system – Case study Kenya," Energy, Elsevier, vol. 90(P2), pages 1830-1841.
    7. Gudina Terefe Tucho & Henri C. Moll & Anton J. M. Schoot Uiterkamp & Sanderine Nonhebel, 2016. "Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements," Energies, MDPI, vol. 9(9), pages 1-16, September.
    8. Robyn Meeks & Katharine R. E. Sims & Hope Thompson, 2019. "Waste Not: Can Household Biogas Deliver Sustainable Development?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 763-794, March.
    9. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    10. Wu, X.F. & Chen, G.Q. & Wu, X.D. & Yang, Q. & Alsaedi, A. & Hayat, T. & Ahmad, B., 2015. "Renewability and sustainability of biogas system: Cosmic exergy based assessment for a case in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1509-1524.
    11. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    12. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    13. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    14. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.
    15. Gudina Terefe Tucho & Sanderine Nonhebel, 2015. "Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia," Energies, MDPI, vol. 8(9), pages 1-19, September.
    16. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    18. Bekchanov, Maksud & Mondal, Md. Alam Hossain & de Alwis, Ajith & Mirzabaev, Alisher, 2019. "Why adoption is slow despite promising potential of biogas technology for improving energy security and mitigating climate change in Sri Lanka?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 378-390.
    19. Alberto Regattieri & Marco Bortolini & Emilio Ferrari & Mauro Gamberi & Francesco Piana, 2018. "Biogas Micro-Production from Human Organic Waste—A Research Proposal," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    20. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:121:y:2018:i:c:p:368-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.