IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v90y2018icp570-582.html
   My bibliography  Save this article

Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion

Author

Listed:
  • Bharathiraja, B.
  • Sudharsana, T.
  • Jayamuthunagai, J.
  • Praveenkumar, R.
  • Chozhavendhan, S.
  • Iyyappan, J.

Abstract

In the prevailing scenario, the aberrant use of conventional fuels and the impact of greenhouse gases on the environment have leveraged the research efforts into renewable energy production from organic resources and waste. The global energy demand is high and most of the energy is produced from fossil resources. Recent studies refer the anaerobic digestion (AD) as alternative and efficient technology which combines biofuel production and sustainable waste management. There are different technological trends in biogas industry in order to enhance the production and the quality of biogas. Nevertheless, the success of AD for further investments will rise from the low cost of feedstocks availability and the wide variety of usable forms of biogas (heating, electricity and fuel). Biogas, a combination of two-thirds of methane (CH4) and the rest is mostly carbon dioxide (CO2) with traces of hydrogen sulfide. The spent slurry from the produced biogas can be enriched to be utilized as manure for agricultural crop, promoting sustainable biomass production in the world. Biogas can be utilized to produce centralized or distributed power supply in rural and urban areas and are considered to be cost beneficial. The aim of this review paper is to analyze various feedstocks, which are widely used all over the world. The working operations of anaerobic digestion process, current trends along with its merits and demerits are also discussed in order to draw more research and development towards producing a sustainable environment.

Suggested Citation

  • Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
  • Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:570-582
    DOI: 10.1016/j.rser.2018.03.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301904
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oecd, 2012. "Do Today's 15-Year-Olds Feel Environmentally Responsible?," PISA in Focus 21, OECD Publishing.
    2. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    3. Rachel Namuli & Claude B. Laflamme & Pragasen Pillay, 2011. "A Computer Program for Modeling the Conversion of Organic Waste to Energy," Energies, MDPI, vol. 4(11), pages 1-29, November.
    4. Curry, Nathan & Pillay, Pragasen, 2012. "Biogas prediction and design of a food waste to energy system for the urban environment," Renewable Energy, Elsevier, vol. 41(C), pages 200-209.
    5. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    6. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    7. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    8. Mshandete, Anthony & Björnsson, Lovisa & Kivaisi, Amelia K. & Rubindamayugi, M.S.T. & Mattiasson, Bo, 2006. "Effect of particle size on biogas yield from sisal fibre waste," Renewable Energy, Elsevier, vol. 31(14), pages 2385-2392.
    9. Kapdi, S.S. & Vijay, V.K. & Rajesh, S.K. & Prasad, Rajendra, 2005. "Biogas scrubbing, compression and storage: perspective and prospectus in Indian context," Renewable Energy, Elsevier, vol. 30(8), pages 1195-1202.
    10. Osorio, F. & Torres, J.C., 2009. "Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production," Renewable Energy, Elsevier, vol. 34(10), pages 2164-2171.
    11. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    12. Zamalloa, Carlos & Boon, Nico & Verstraete, Willy, 2012. "Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions," Applied Energy, Elsevier, vol. 92(C), pages 733-738.
    13. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    14. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    15. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    16. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    17. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    18. Hilkiah Igoni, A. & Ayotamuno, M.J. & Eze, C.L. & Ogaji, S.O.T. & Probert, S.D., 2008. "Designs of anaerobic digesters for producing biogas from municipal solid-waste," Applied Energy, Elsevier, vol. 85(6), pages 430-438, June.
    19. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    20. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    21. Harun, Razif & Singh, Manjinder & Forde, Gareth M. & Danquah, Michael K., 2010. "Bioprocess engineering of microalgae to produce a variety of consumer products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1037-1047, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    2. Marek Cierpiał-Wolan & Bogdan Wierzbiński & Dariusz Twaróg, 2021. "The Use of the Local and Regional Potential in Building Energy Independence—Polish and Ukraine Case Study," Energies, MDPI, vol. 14(19), pages 1-21, September.
    3. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    6. Vinayak Laxman Pachapur & Prianka Kutty & Preetika Pachapur & Satinder Kaur Brar & Yann Le Bihan & Rosa Galvez-Cloutier & Gerardo Buelna, 2019. "Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems," Energies, MDPI, vol. 12(3), pages 1-26, February.
    7. Sharma, Vinit & Getahun, Tokuma & Verma, Minal & Villa, Alberto & Gupta, Neeraj, 2020. "Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    9. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Design and Employing of a Non-Linear Response Surface Model to Predict the Microbial Loads in Anaerobic Digestion of Cow Manure: Batch Balloon Digester," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    10. Fagbohungbe, Michael O. & Komolafe, Abiodun O. & Okere, Uchechukwu V., 2019. "Renewable hydrogen anaerobic fermentation technology: Problems and potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    12. Wojcieszak, Dawid & Przybył, Jacek & Ratajczak, Izabela & Goliński, Piotr & Janczak, Damian & Waśkiewicz, Agnieszka & Szentner, Kinga & Woźniak, Magdalena, 2020. "Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    3. Tijani, Hamzat & Abdullah, Norhayati & Yuzir, Ali, 2015. "Integration of microalgae biomass in biomethanation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1610-1622.
    4. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    5. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    6. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    7. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    8. Khan, Shakeel A. & Malla, Fayaz A. & Rashmi, & Malav, Lal Chand & Gupta, Navindu & Kumar, Amit, 2018. "Potential of wastewater treating Chlorella minutissima for methane enrichment and CO2 sequestration of biogas and producing lipids," Energy, Elsevier, vol. 150(C), pages 153-163.
    9. Merrylin Jayaseelan & Mohamed Usman & Adishkumar Somanathan & Sivashanmugam Palani & Gunasekaran Muniappan & Rajesh Banu Jeyakumar, 2021. "Microalgal Production of Biofuels Integrated with Wastewater Treatment," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    10. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    11. KS Rajmohan & C Ramya & Sunita Varjani, 2021. "Trends and advances in bioenergy production and sustainable solid waste management," Energy & Environment, , vol. 32(6), pages 1059-1085, September.
    12. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Murillo-Alvarado, Pascual Eduardo & Ponce-Ortega, José María, 2022. "An optimization approach to increase the human development index through a biogas supply chain in a developing region," Renewable Energy, Elsevier, vol. 190(C), pages 347-357.
    14. Anyaoku, Chukwunonso Chinedu & Baroutian, Saeid, 2018. "Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 982-991.
    15. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    16. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Ahmad, Ashfaq & Buang, Azizul & Bhat, A.H., 2016. "Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 214-234.
    18. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.
    19. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    20. Kimberley E. Miller & Tess Herman & Dimas A. Philipinanto & Sarah C. Davis, 2021. "Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor," Sustainability, MDPI, vol. 13(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:570-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.