IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1106-d216111.html
   My bibliography  Save this article

A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration

Author

Listed:
  • Anahita Rabii

    (Civil Engineering Department, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada)

  • Saad Aldin

    (Civil Engineering Department, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada)

  • Yaser Dahman

    (Chemical Engineering Department, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada)

  • Elsayed Elbeshbishy

    (Civil Engineering Department, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada)

Abstract

Recent studies have shown that anaerobic co-digestion (AnCoD) is superior to conventional anaerobic digestion (AD). The benefits of enhanced bioenergy production and solids reduction using co-substrates have attracted researchers to study the co-digestion technology and to better understand the effect of multi substrates on digester performance. This review will discuss the results of such studies with the main focus on: (1) generally the advantages of co-digestion over mono-digestion in terms of system stability, bioenergy, and solids reduction; (2) microbial consortia diversity and their synergistic impact on biogas improvement; (3) the effect of digester mode, i.e., multi-stage versus single stage digestion on AnCoD. It is essential to note that the studies reported improvement in the synergy and diverse microbial consortia when using co-digestion technologies, in addition to higher biomethane yield when using two-stage mode. A good example would be the co-digestion of biodiesel waste and glycerin with municipal waste sludge in a two-stage reactor resulting in 100% increase of biogas and 120% increase in the methane content of the produced biogas with microbial population dominated by Methanosaeta and Methanomicrobium .

Suggested Citation

  • Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1106-:d:216111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kwietniewska, Ewa & Tys, Jerzy, 2014. "Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 491-500.
    2. Anonymous, 1953. "Food and Agriculture Organization," International Organization, Cambridge University Press, vol. 7(3), pages 408-410, August.
    3. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    4. Bujak, Janusz & Sitarz, Piotr & Jasiewicz, Paulina, 2018. "Fuel consumption in the thermal treatment of low-calorific industrial food processing waste," Applied Energy, Elsevier, vol. 221(C), pages 139-147.
    5. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    6. Silvestre, G. & Illa, J. & Fernández, B. & Bonmatí, A., 2014. "Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties," Applied Energy, Elsevier, vol. 117(C), pages 87-94.
    7. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    8. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Christopoulou, Nicholetta & Goumenaki, Maria, 2007. "Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure," Applied Energy, Elsevier, vol. 84(6), pages 646-663, June.
    9. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    10. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    11. Mohammed M.M. Osman & Xiaohou Shao & Deling Zhao & Amir K. Basheer & Hongmei Jin & Yingpeng Zhang, 2019. "Methane Production from Alginate-Extracted and Non-Extracted Waste of Laminaria japonica : Anaerobic Mono- and Synergetic Co-Digestion Effects on Yield," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    12. Shah, Fayyaz Ali & Mahmood, Qaisar & Rashid, Naim & Pervez, Arshid & Raja, Iftikhar Ahmad & Shah, Mohammad Maroof, 2015. "Co-digestion, pretreatment and digester design for enhanced methanogenesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 627-642.
    13. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    14. Anonymous, 1953. "Food and Agriculture Organization," International Organization, Cambridge University Press, vol. 7(1), pages 131-134, February.
    15. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    16. Anonymous, 1953. "Food and Agriculture Organization," International Organization, Cambridge University Press, vol. 7(4), pages 558-561, November.
    17. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    18. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    19. Divya, D. & Gopinath, L.R. & Merlin Christy, P., 2015. "A review on current aspects and diverse prospects for enhancing biogas production in sustainable means," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 690-699.
    20. Tedesco, S. & Benyounis, K.Y. & Olabi, A.G., 2013. "Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland," Energy, Elsevier, vol. 61(C), pages 27-33.
    21. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    2. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    3. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    4. Martínez-Ruano, Jimmy Anderson & Restrepo-Serna, Daissy Lorena & Carmona-Garcia, Estefanny & Giraldo, Jhonny Alejandro Poveda & Aroca, Germán & Cardona, Carlos Ariel, 2019. "Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment," Applied Energy, Elsevier, vol. 241(C), pages 504-518.
    5. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    6. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    7. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    8. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    9. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Pitman, W.D. & Adjei, M.B. & Michaud, M.W., 1990. "Desmanthus: AGRONOMIC CHARACTERISTICS, GERMPLASM RESOURCES, AND FORAGE POTENTIAL IN THE CARIBBEAN," 26th Annual Meeting, July 29 to August 4, 1990, Mayaguez, Puerto Rico 259404, Caribbean Food Crops Society.
    11. Di Maria, Francesco & Sisani, Federico & Norouzi, Omid & Mersky, Ronald L., 2019. "The effectiveness of anaerobic digestion of bio-waste in replacing primary energies: An EU28 case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 347-354.
    12. Gilbert Noël, 1988. "La participation de la France aux stratégies d'organisation internationale de l'agriculture," Économie rurale, Programme National Persée, vol. 184(1), pages 63-70.
    13. Muth, Mary K. & Karns, Shawn A. & Nielsen, Samara Joy & Buzby, Jean C. & Wells, Hodan Farah, 2011. "Consumer-Level Food Loss Estimates and Their Use in the ERS Loss- Adjusted Food Availability Data," Technical Bulletins 184307, United States Department of Agriculture, Economic Research Service.
    14. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    15. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    16. Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
    17. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Dommen, Arthur J., 1994. "Land Tenure and Agricultural Production in Sub-Saharan Africa: A Market-Oriented Approach to Analyzing Their Interactions," Staff Reports 278744, United States Department of Agriculture, Economic Research Service.
    19. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    20. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1106-:d:216111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.