IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp148-159.html
   My bibliography  Save this article

Production of methane from anaerobic digestion of jatropha and pongamia oil cakes

Author

Listed:
  • Chandra, R.
  • Vijay, V.K.
  • Subbarao, P.M.V.
  • Khura, T.K.

Abstract

The experimental study was carried out on anaerobic digestion of jatropha (Jatropha curcas) and pongamia (Pongamia pinnata) oil seed cakes in a 20m3/d capacity floating drum biogas plant under mesophilic temperature condition. The average specific methane production potential of jatropha oil seed cake was observed as 0.394m3/kg TS and 0.422m3/kg VS. The average content of methane and carbon dioxide in the produced biogas over 30days of retention time period was found as 66.6% and 31.3%, respectively. Cumulative methane yield over 30days of retention time period was found as 131.258m3 with a 259.2kg of input volatile solids, with an average total volatile solids mass removal efficiency of 59.6%. However, in case of pongamia oil seed cake average specific methane production was observed as 0.427m3/kg TS and 0.448m3/kg VS. The average value of methane and carbon dioxide content in the produced biogas over 30days of retention was found as 62.5% and 33.5%, respectively. Cumulative methane yield over 30days of retention time period was found as 147.605m3 with a 255.9kg of input volatile solids, with an average total volatile solids mass removal efficiency of 74.9%.

Suggested Citation

  • Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:148-159
    DOI: 10.1016/j.apenergy.2010.10.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261910005283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2010.10.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    2. Rao, M. S. & Singh, S. P. & Singh, A. K. & Sodha, M. S., 2000. "Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage," Applied Energy, Elsevier, vol. 66(1), pages 75-87, May.
    3. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    4. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Christopoulou, Nicholetta & Goumenaki, Maria, 2007. "Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure," Applied Energy, Elsevier, vol. 84(6), pages 646-663, June.
    5. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sánchez, A.S. & Almeida, M.B. & Torres, E.A. & Kalid, R.A. & Cohim, E. & Gasparatos, A., 2018. "Alternative biodiesel feedstock systems in the Semi-arid region of Brazil: Implications for ecosystem services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2744-2758.
    2. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    3. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    4. Bożym, Marta & Florczak, Iwona & Zdanowska, Paulina & Wojdalski, Janusz & Klimkiewicz, Marek, 2015. "An analysis of metal concentrations in food wastes for biogas production," Renewable Energy, Elsevier, vol. 77(C), pages 467-472.
    5. Gupta, Aditi & Kumar, Ashwani & Sharma, Satyawati & Vijay, V.K., 2013. "Comparative evaluation of raw and detoxified mahua seed cake for biogas production," Applied Energy, Elsevier, vol. 102(C), pages 1514-1521.
    6. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    7. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    8. Mohammed Ali Musa & Syazwani Idrus & Hasfalina Che Man & Nik Norsyahariati Nik Daud, 2018. "Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements," Energies, MDPI, vol. 11(7), pages 1-24, June.
    9. Ewunie, Gebresilassie Asnake & Morken, John & Lekang, Odd Ivar & Yigezu, Zerihun Demrew, 2021. "Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Sambusiti, C. & Ficara, E. & Malpei, F. & Steyer, J.P. & Carrère, H., 2013. "Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum," Energy, Elsevier, vol. 55(C), pages 449-456.
    11. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    12. Trivedi, Abhinav & Verma, Amit Ranjan & Kaur, Supreet & Jha, Bhaskar & Vijay, Vandit & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, P.M.V. & Tiwari, Ratnesh & Hariprasad, P. & Prasad, Rajendra, 2017. "Sustainable bio-energy production models for eradicating open field burning of paddy straw in Punjab, India," Energy, Elsevier, vol. 127(C), pages 310-317.
    13. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    14. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    15. Amit Kumar Sharma & Pradeepta Kumar Sahoo & Mainak Mukherjee & Alok Patel, 2022. "Assessment of Sustainable Biogas Production from Co-Digestion of Jatropha De-Oiled Cake and Cattle Dung Using Floating Drum Type Digester under Psychrophilic and Mesophilic Conditions," Clean Technol., MDPI, vol. 4(2), pages 1-13, June.
    16. Kumar, Dinesh & Pant, Kamal K., 2016. "Insitu upgradation of biocrude vapor generated from non-edible oil cake's hydrothermal conversion over aluminated mesoporous catalysts," Renewable Energy, Elsevier, vol. 95(C), pages 43-52.
    17. Kalsi, Sunmeet Singh & Subramanian, K.A., 2017. "Effect of simulated biogas on performance, combustion and emissions characteristics of a bio-diesel fueled diesel engine," Renewable Energy, Elsevier, vol. 106(C), pages 78-90.
    18. Subramanian, K.A. & Mathad, Vinaya C. & Vijay, V.K. & Subbarao, P.M.V., 2013. "Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer," Applied Energy, Elsevier, vol. 105(C), pages 17-29.
    19. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2018. "Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure," Energy, Elsevier, vol. 165(PB), pages 760-768.
    20. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    21. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    22. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    2. Periyasamy Elaiyaraju & Nagarajan Partha, 2012. "Biogas Production from Sago (Tapioca) Wastewater Using Anaerobic Batch Reactor," Energy & Environment, , vol. 23(4), pages 631-645, June.
    3. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    4. Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
    5. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    6. George Lazaroiu & Katarina Valaskova & Elvira Nica & Pavol Durana & Pavol Kral & Petr Bartoš & Anna Maroušková, 2020. "Techno-Economic Assessment: Food Emulsion Waste Management," Energies, MDPI, vol. 13(18), pages 1-12, September.
    7. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    8. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    9. Brown, N. & Güttler, J. & Shilton, A., 2016. "Overcoming the challenges of full scale anaerobic co-digestion of casein whey," Renewable Energy, Elsevier, vol. 96(PA), pages 425-432.
    10. Pastor, L. & Ruiz, L. & Pascual, A. & Ruiz, B., 2013. "Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production," Applied Energy, Elsevier, vol. 107(C), pages 438-445.
    11. Martínez-Ruano, Jimmy Anderson & Restrepo-Serna, Daissy Lorena & Carmona-Garcia, Estefanny & Giraldo, Jhonny Alejandro Poveda & Aroca, Germán & Cardona, Carlos Ariel, 2019. "Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment," Applied Energy, Elsevier, vol. 241(C), pages 504-518.
    12. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    13. Di Maria, Francesco & Sordi, Alessio & Micale, Caterina, 2012. "Optimization of Solid State Anaerobic Digestion by inoculum recirculation: The case of an existing Mechanical Biological Treatment plant," Applied Energy, Elsevier, vol. 97(C), pages 462-469.
    14. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    15. Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
    16. Yang Mo Gu & Seon Young Park & Ji Yeon Park & Byoung-In Sang & Byoung Seong Jeon & Hyunook Kim & Jin Hyung Lee, 2021. "Impact of Attrition Ball-Mill on Characteristics and Biochemical Methane Potential of Food Waste," Energies, MDPI, vol. 14(8), pages 1-10, April.
    17. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    18. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    19. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    20. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:148-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.