IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp14-22.html
   My bibliography  Save this article

Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective

Author

Listed:
  • Bateni, Hamed
  • Karimi, Keikhosro
  • Zamani, Akram
  • Benakashani, Fatemeh

Abstract

Whole parts of castor plant, as a non-edible energy crop, were used for multiple biofuels production. Extracted castor oil was used for biodiesel production by transesterification, whereas the castor plant residues, i.e., stem, seed cake, and leaves, were employed for ethanol and biogas production. Effects of operating conditions, including methanol to oil ratio, temperature, and reaction time on biodiesel production yield were investigated. The optimum biodiesel yield was 88.2%, obtained at 0.4:1 methanol to oil mass ratio at 40°C for 90min. This yield corresponded to 155g biodiesel per kg castor plant. In addition, pretreatment using 8% w/v NaOH at 0 and 100°C for 30 and 60min was applied to improve ethanol and biogas yields. The best results for both enzymatic hydrolysis and ethanol production by simultaneous saccharification and fermentation (SSF) were obtained after alkali pretreatment at 100°C for 60min for all plant residues. The highest ethanol production yield achieved from pretreated castor stem was as high as 82.2%, corresponding to 63g ethanol per kg castor plant. In the case of biogas production, alkali pretreatment enhanced the methane production yield from castor stem; however, it could not improve the production yield of castor seed cake and leaves. Furthermore, untreated castor seed cake had the highest methane production yield of 252.1ml/g VS, equal to 68.2L per kg of castor plant.

Suggested Citation

  • Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:14-22
    DOI: 10.1016/j.apenergy.2014.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramezani, K. & Rowshanzamir, S. & Eikani, M.H., 2010. "Castor oil transesterification reaction: A kinetic study and optimization of parameters," Energy, Elsevier, vol. 35(10), pages 4142-4148.
    2. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    3. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
    4. Shafiei, Marzieh & Zilouei, Hamid & Zamani, Akram & Taherzadeh, Mohammad J. & Karimi, Keikhosro, 2013. "Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 163-169.
    5. Cao, Leichang & Wang, Jieni & Liu, Kuojin & Han, Sheng, 2014. "Ethyl acetoacetate: A potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil," Applied Energy, Elsevier, vol. 114(C), pages 18-21.
    6. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    7. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    8. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    9. Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
    10. Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.
    11. Dias, J.M. & Araújo, J.M. & Costa, J.F. & Alvim-Ferraz, M.C.M. & Almeida, M.F., 2013. "Biodiesel production from raw castor oil," Energy, Elsevier, vol. 53(C), pages 58-66.
    12. Eevera, T. & Rajendran, K. & Saradha, S., 2009. "Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions," Renewable Energy, Elsevier, vol. 34(3), pages 762-765.
    13. Lin, Jiefeng & Gaustad, Gabrielle & Trabold, Thomas A., 2013. "Profit and policy implications of producing biodiesel–ethanol–diesel fuel blends to specification," Applied Energy, Elsevier, vol. 104(C), pages 936-944.
    14. Maleki, Esmat & Aroua, Mohamed Kheireddine & Sulaiman, Nik Meriam Nik, 2013. "Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil," Applied Energy, Elsevier, vol. 104(C), pages 905-909.
    15. Monlau, Florian & Latrille, Eric & Da Costa, Aline Carvalho & Steyer, Jean-Philippe & Carrère, Hélène, 2013. "Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 1105-1113.
    16. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    17. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    18. Yin, Xiulian & Ma, Haile & You, Qinghong & Wang, Zhenbin & Chang, Jinke, 2012. "Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil," Applied Energy, Elsevier, vol. 91(1), pages 320-325.
    19. Tang, Ying & Meng, Mei & Zhang, Jie & Lu, Yong, 2011. "Efficient preparation of biodiesel from rapeseed oil over modified CaO," Applied Energy, Elsevier, vol. 88(8), pages 2735-2739, August.
    20. Conceição, Marta M. & Candeia, Roberlúcia A. & Silva, Fernando C. & Bezerra, Aline F. & Fernandes, Valter Jr. & Souza, Antonio G., 2007. "Thermoanalytical characterization of castor oil biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 964-975, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shokrollahi, Simin & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "Efficient bioenergy recovery from different date palm industrial wastes," Energy, Elsevier, vol. 272(C).
    2. Ebrahimian, Elham & Denayer, Joeri F.M. & Aghbashlo, Mortaza & Tabatabaei, Meisam & Karimi, Keikhosro, 2022. "Biomethane and biodiesel production from sunflower crop: A biorefinery perspective," Renewable Energy, Elsevier, vol. 200(C), pages 1352-1361.
    3. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.
    4. Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
    5. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    6. Hashemi, Seyed Sajad & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Hydrothermal pretreatment of safflower straw to enhance biogas production," Energy, Elsevier, vol. 172(C), pages 545-554.
    7. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    8. Kaur, Ravneet & Gera, Poonam & Jha, Mithilesh Kumar & Bhaskar, Thallada, 2019. "Reaction parameters effect on hydrothermal liquefaction of castor (Ricinus Communis) residue for energy and valuable hydrocarbons recovery," Renewable Energy, Elsevier, vol. 141(C), pages 1026-1041.
    9. Melikoglu, Mehmet, 2016. "The role of renewables and nuclear energy in Turkey׳s Vision 2023 energy targets: Economic and technical scrutiny," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1-12.
    10. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    11. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    12. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    13. Parascanu, M.M. & Puig-Gamero, M. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2019. "Comparison of three Mexican biomasses valorization through combustion and gasification: Environmental and economic analysis," Energy, Elsevier, vol. 189(C).
    14. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    15. Zhu, Qing-li & Gu, Heng & Ke, Zengguang, 2018. "Congeneration biodiesel, ricinine and nontoxic meal from castor seed," Renewable Energy, Elsevier, vol. 120(C), pages 51-59.
    16. Luigi Pari & Alessandro Suardi & Walter Stefanoni & Francesco Latterini & Nadia Palmieri, 2020. "Environmental and Economic Assessment of Castor Oil Supply Chain: A Case Study," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    17. Pinzi, S. & López, I. & Leiva-Candia, D.E. & Redel-Macías, M.D. & Herreros, J.M. & Cubero-Atienza, A. & Dorado, M.P., 2018. "Castor oil enhanced effect on fuel ethanol-diesel fuel blend properties," Applied Energy, Elsevier, vol. 224(C), pages 409-416.
    18. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    2. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    3. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    4. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    5. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    6. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    7. Gülşen, Ece & Olivetti, Elsa & Freire, Fausto & Dias, Luis & Kirchain, Randolph, 2014. "Impact of feedstock diversification on the cost-effectiveness of biodiesel," Applied Energy, Elsevier, vol. 126(C), pages 281-296.
    8. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    9. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    10. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    11. Xiao, Hanjie & Li, Yizhe & Wang, Hua, 2017. "A stochastic kinetic study of preparing fatty acid from rapeseed oil via subcritical hydrolysis," Applied Energy, Elsevier, vol. 204(C), pages 1084-1093.
    12. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    13. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    14. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.
    15. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    16. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    17. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    18. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    19. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    20. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:14-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.