IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp604-616.html
   My bibliography  Save this article

Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production

Author

Listed:
  • Patel, Alok
  • Arora, Neha
  • Mehtani, Juhi
  • Pruthi, Vikas
  • Pruthi, Parul A.

Abstract

Over the last decade, there has been a huge upsurge of interest in sustainable production of biomass-based biofuels to fulfill the existing energy demand and simultaneously reducing the environmental deterioration. Earlier, vegetable oils and animal fats were utilized for biodiesel production, but due to food crisis and environmental sustainability, renewable sources such as neutral lipid derived from microbes are gaining much attention for budding biodiesel industries. Among various types of microorganisms, oleaginous yeasts are more promising feedstock to accomplish the current demand of biodiesel production and utilize a large number of cost-effective renewable substrates for their growth and lipid accumulation. However, biodiesel obtained from oleaginous yeasts have certain restrictions regarding their commercial utilization due to their unstable fuel properties such as oxidative stability, cetane number, viscosity and low-temperature performance etc. Numerous articles have been published in the public domain describing the fatty acid profiles of oleaginous yeast as feedstock for biodiesel production. However, the evaluation of quality parameters of biodiesel obtained from oleaginous yeasts is still in infancy. Although there is a huge disparity in a number of papers published for biodiesel production yet the reporting performance on diesel engines need to be verified in details. In this review article, attempt has been made to assess the important biofuel properties on the basis of the fatty acid profile of oleaginous yeast. Thus this evaluation would provide a guideline to the biodiesel producer to improve the production plans related to feedstocks for oleaginous yeast, culture conditions and biodiesel blending.

Suggested Citation

  • Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:604-616
    DOI: 10.1016/j.rser.2017.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117305178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahid, Ejaz M. & Jamal, Younis, 2011. "Production of biodiesel: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4732-4745.
    2. Kumar, Dipesh & Singh, Bhaskar & Korstad, John, 2017. "Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 654-671.
    3. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    4. Gopinath, A. & Puhan, Sukumar & Nagarajan, G., 2009. "Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition," Renewable Energy, Elsevier, vol. 34(7), pages 1806-1811.
    5. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
    6. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    7. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    8. Chatzifragkou, Afroditi & Makri, Anna & Belka, Aikaterini & Bellou, Stamatina & Mavrou, Marilena & Mastoridou, Maria & Mystrioti, Paraskevi & Onjaro, Grace & Aggelis, George & Papanikolaou, Seraphim, 2011. "Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species," Energy, Elsevier, vol. 36(2), pages 1097-1108.
    9. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    10. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    11. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    12. kumar, Mukesh & Sharma, Mahendra Pal, 2016. "Selection of potential oils for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1129-1138.
    13. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2016. "Process simulation and life cycle analysis of biodiesel production," Renewable Energy, Elsevier, vol. 85(C), pages 945-952.
    14. Wang, Qi & Guo, Feng-Jun & Rong, Yan-Jun & Chi, Zhen-Ming, 2012. "Lipid production from hydrolysate of cassava starch by Rhodosporidium toruloides 21167 for biodiesel making," Renewable Energy, Elsevier, vol. 46(C), pages 164-168.
    15. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    16. Fassinou, Wanignon Ferdinand & Sako, Aboubakar & Fofana, Alhassane & Koua, Kamenan Blaise & Toure, Siaka, 2010. "Fatty acids composition as a means to estimate the high heating value (HHV) of vegetable oils and biodiesel fuels," Energy, Elsevier, vol. 35(12), pages 4949-4954.
    17. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    18. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    19. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    20. Nainwal, Shubham & Sharma, Naman & Sharma, Arnav Sen & Jain, Shivani & Jain, Siddharth, 2015. "Cold flow properties improvement of Jatropha curcas biodiesel and waste cooking oil biodiesel using winterization and blending," Energy, Elsevier, vol. 89(C), pages 702-707.
    21. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    22. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    23. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
    24. Meng, Xin & Yang, Jianming & Xu, Xin & Zhang, Lei & Nie, Qingjuan & Xian, Mo, 2009. "Biodiesel production from oleaginous microorganisms," Renewable Energy, Elsevier, vol. 34(1), pages 1-5.
    25. Sawangkeaw, Ruengwit & Ngamprasertsith, Somkiat, 2013. "A review of lipid-based biomasses as feedstocks for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 97-108.
    26. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2010. "High quality biodiesel and its diesel engine application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1999-2008, September.
    27. Banković–Ilić, Ivana B. & Miladinović, Marija R. & Stamenković, Olivera S. & Veljković, Vlada B., 2017. "Application of nano CaO–based catalysts in biodiesel synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 746-760.
    28. Alptekin, Ertan, 2017. "Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine," Energy, Elsevier, vol. 119(C), pages 44-52.
    29. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    30. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.
    31. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.
    32. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    33. Yan, Kai & Jarvis, Cody & Gu, Jing & Yan, Yong, 2015. "Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 986-997.
    34. Suh, Hyun Kyu & Lee, Chang Sik, 2016. "A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1601-1620.
    35. Gen, Qian & Wang, Qi & Chi, Zhen-Ming, 2014. "Direct conversion of cassava starch into single cell oil by co-cultures of the oleaginous yeast Rhodosporidium toruloides and immobilized amylases-producing yeast Saccharomycopsis fibuligera," Renewable Energy, Elsevier, vol. 62(C), pages 522-526.
    36. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    2. Marina Grubišić & Maja Galić Perečinec & Ines Peremin & Katarina Mihajlovski & Sunčica Beluhan & Božidar Šantek & Mirela Ivančić Šantek, 2022. "Optimization of Pretreatment Conditions and Enzymatic Hydrolysis of Corn Cobs for Production of Microbial Lipids by Trichosporon oleaginosus," Energies, MDPI, vol. 15(9), pages 1-16, April.
    3. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    4. Arif, Muhammad & Li, Yuxi & El-Dalatony, Marwa M. & Zhang, Chunjiang & Li, Xiangkai & Salama, El-Sayed, 2021. "A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal," Renewable Energy, Elsevier, vol. 163(C), pages 1973-1982.
    5. Maurizio Comoli & Patrizia Tettamanzi & Michael Murgolo, 2023. "Accounting for ‘ESG’ under Disruptions: A Systematic Literature Network Analysis," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    6. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Bazgha Ijaz & Muhammad Asif Hanif & Umer Rashid & Muhammad Zubair & Zahid Mushtaq & Haq Nawaz & Thomas Shean Yaw Choong & Imededdine Arbi Nehdi, 2020. "High Vacuum Fractional Distillation (HVFD) Approach for Quality and Performance Improvement of Azadirachta indica Biodiesel," Energies, MDPI, vol. 13(11), pages 1-15, June.
    8. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    9. Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
    10. Rishibha Dixit & Surendra Singh & Manoj Kumar Enamala & Alok Patel, 2022. "Effect of Various Growth Medium on the Physiology and De Novo Lipogenesis of a Freshwater Microalga Scenedesmus rotundus -MG910488 under Autotrophic Condition," Clean Technol., MDPI, vol. 4(3), pages 1-19, August.
    11. Svetlana V. Kamzolova & Igor G. Morgunov, 2021. "Physiological, Biochemical and Energetic Characteristics of Torulaspora globosa , a Potential Producer of Biofuel," Energies, MDPI, vol. 14(11), pages 1-9, May.
    12. Patel, Alok & Pruthi, Vikas & Pruthi, Parul A., 2019. "Innovative screening approach for the identification of triacylglycerol accumulating oleaginous strains," Renewable Energy, Elsevier, vol. 135(C), pages 936-944.
    13. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    14. Chuengcharoenphanich, Nuttha & Watsuntorn, Wannapawn & Qi, Wei & Wang, Zhongming & Hu, Yunzi & Chulalaksananukul, Warawut, 2023. "The potential of biodiesel production from grasses in Thailand through consolidated bioprocessing using a cellulolytic oleaginous yeast, Cyberlindnera rhodanensis CU-CV7," Energy, Elsevier, vol. 263(PB).
    15. Nesma M. Helal & Hesham F. Alharby & Basmah M. Alharbi & Atif. A. Bamagoos & Ahmed M. Hashim, 2020. "Thymelaea hirsuta and Echinops spinosus : Xerophytic Plants with High Potential for First-Generation Biodiesel Production," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    16. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    4. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    6. Patel, Alok & Pruthi, Vikas & Pruthi, Parul A., 2017. "Synchronized nutrient stress conditions trigger the diversion of CDP-DG pathway of phospholipids synthesis towards de novo TAG synthesis in oleaginous yeast escalating biodiesel production," Energy, Elsevier, vol. 139(C), pages 962-974.
    7. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    8. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    9. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    10. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    11. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    12. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    13. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    14. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    15. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    16. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    17. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    18. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    20. Vigneshwar, V. & Krishnan, S. Yogesh & Kishna, R. Susanth & Srinath, R. & Ashok, B. & Nanthagopal, K., 2019. "Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:604-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.