IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp634-645.html
   My bibliography  Save this article

Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions

Author

Listed:
  • Suiuay, Chokchai
  • Laloon, Kittipong
  • Katekaew, Somporn
  • Senawong, Kritsadang
  • Noisuwan, Phakamat
  • Sudajan, Somposh

Abstract

This study focused on the performance and exhaust emissions of gasoline engines using gasoline-like fuel (GLF) produced from hard-resin of Yang (HY) by the fast pyrolysis process in semi-continuous reactors at pyrolysis temperature of 500 °C. Bio-oil products obtained from the process were distilled into heavy fuel at 200–350 °C and light fuel at 25–200 °C. HY (100%wt) generated 20.5%wt of light fuel and 30.8%wt of heavy fuel with 35.0%wt of gas and 13.7%wt of waste obtained. Light fuel as well as GLF and gasoline were tested for distillation, density, viscosity, heating value, flash point and silver strip corrosion under ASTM and also for the effect of GLF on performance and exhaust emissions of spark-ignition (SI) engines for a four-stroke single cylinder and fuel mixing system with carburetor. Positive results were shown for performance of brake torque, brake power and brake thermal efficiency. Findings revealed that brake specific fuel consumption was lower compared to gasoline. Carbon monoxide (CO) and hydrocarbon (HC) from engine exhaust were lower than gasoline with carbon dioxide (CO2) and nitrogen oxides (NOx) higher.

Suggested Citation

  • Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:634-645
    DOI: 10.1016/j.renene.2020.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120302226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suiuay, Chokchai & Sudajan, Somposh & Katekaew, Somporn & Senawong, Kritsadang & Laloon, Kittipong, 2019. "Production of gasoline-like-fuel and diesel-like-fuel from hard-resin of Yang (Dipterocarpus alatus) using a fast pyrolysis process," Energy, Elsevier, vol. 187(C).
    2. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    3. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    4. Namita Khanna & Debabrata Das, 2013. "Biohydrogen production by dark fermentation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(4), pages 401-421, July.
    5. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    6. ., 2019. "Special sensitivity and neutralization," Chapters, in: Convenience Triangle in White-Collar Crime, chapter 7, pages 86-104, Edward Elgar Publishing.
    7. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    8. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    9. Koç, Mustafa & Sekmen, Yakup & Topgül, Tolga & Yücesu, Hüseyin Serdar, 2009. "The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine," Renewable Energy, Elsevier, vol. 34(10), pages 2101-2106.
    10. ., 2019. "Special sectors," Chapters, in: Islamic Finance, chapter 6, pages 149-179, Edward Elgar Publishing.
    11. Can, Özer & Öztürk, Erkan & Yücesu, H. Serdar, 2017. "Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine," Renewable Energy, Elsevier, vol. 109(C), pages 73-82.
    12. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    13. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    14. Arpa, O. & Yumrutas, R. & Alma, M.H., 2010. "Effects of turpentine and gasoline-like fuel obtained from waste lubrication oil on engine performance and exhaust emission," Energy, Elsevier, vol. 35(9), pages 3603-3613.
    15. Shamsul, N.S. & Kamarudin, S.K. & Rahman, N.A., 2017. "Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 538-549.
    16. Ayanoğlu, Abdulkadir & Yumrutaş, Recep, 2016. "Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis," Energy, Elsevier, vol. 103(C), pages 456-468.
    17. Andreas Veneris & Andreas Park, 2019. "Special Drawing Rights in a New Decentralized Century," Papers 1907.11057, arXiv.org.
    18. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    19. Faleh, Nahla & Khila, Zouhour & Wahada, Zeineb & Pons, Marie-Noëlle & Houas, Ammar & Hajjaji, Noureddine, 2018. "Exergo-environmental life cycle assessment of biodiesel production from mutton tallow transesterification," Renewable Energy, Elsevier, vol. 127(C), pages 74-83.
    20. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    21. Dominick Bartelme & Andrei Levchenko & Ting Lan, 2019. "Specialization, Market Access and Medium-Term Growth," 2019 Meeting Papers 999, Society for Economic Dynamics.
    22. Arpa, Orhan & Yumrutas, Recep & Demirbas, Ayhan, 2010. "Production of diesel-like fuel from waste engine oil by pyrolitic distillation," Applied Energy, Elsevier, vol. 87(1), pages 122-127, January.
    23. Tesfa, B. & Mishra, R. & Gu, F. & Powles, N., 2010. "Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines," Renewable Energy, Elsevier, vol. 35(12), pages 2752-2760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munimathan Arunkumar & Vinayagam Mohanavel & Asif Afzal & Thanikodi Sathish & Manickam Ravichandran & Sher Afghan Khan & Nur Azam Abdullah & Muhammad Hanafi Bin Azami & Mohammad Asif, 2021. "A Study on Performance and Emission Characteristics of Diesel Engine Using Ricinus Communis (Castor Oil) Ethyl Esters," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    3. Luís Durão & Joaquim Costa & Tiago Arantes & F. P. Brito & Jorge Martins & Margarida Gonçalves, 2020. "Performance and Emissions of a Spark Ignition Engine Operated with Gasoline Supplemented with Pyrogasoline and Ethanol," Energies, MDPI, vol. 13(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    2. Anis, Samsudin & Budiandono, Galuh Nur, 2019. "Investigation of the effects of preheating temperature of biodiesel-diesel fuel blends on spray characteristics and injection pump performances," Renewable Energy, Elsevier, vol. 140(C), pages 274-280.
    3. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    4. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    6. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    7. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    8. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    9. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    10. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Alagu, Karthikeyan & Venu, Harish & Jayaraman, Jayaprabakar & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu & S, Dhanasekar, 2019. "Novel water hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 295-305.
    12. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    13. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    14. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    15. Resitoglu, Ibrahim Aslan, 2021. "The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    17. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    18. Thangamani, Saravanakumar & Sundaresan, Sathya Narayanan & Kannappan S., Subbu & Barawkar, Viraj Tatyasaheb & Jeyaseelan, Thangaraja, 2021. "Impact of biodiesel and diesel blends on the fuel filter: A combined experimental and simulation study," Energy, Elsevier, vol. 227(C).
    19. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    20. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:634-645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.