IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v123y2020ics1364032120300629.html
   My bibliography  Save this article

Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh

Author

Listed:
  • Sarker, Swati Anindita
  • Wang, Shouyang
  • Adnan, K.M. Mehedi
  • Sattar, M. Nahid

Abstract

Biogas technology can play a significant role in reducing dependency on fossil fuels, and in increasing of rural energy access. This study assesses the profitability of biogas plants and examines the determining factors affecting the adoption of biogas technology by rural households in Bangladesh. Data were extracted from primary sources through a structured questionnaire in four districts in Bangladesh. Stratified random sampling involved 140 biogas adopters with a wide range of biogas plant sizes (2 m3–120 m3) along with 140 non-adopters. The research used the benefit-cost ratio for profitability estimation. The study employed a logit model for analyzing the key factors influencing the adoption of biogas technology. The outcomes revealed that the benefit-cost ratio is higher than 1, and 6 m3 is the most economically viable plant among all sizes. Sensitivity analysis helped the research to check the stability of a biogas plant in different economic conditions (10% increase in cost or decrease in profit and constant changes in interest rate) and discovered that all plant sizes were economically stable. Logit regression analysis showed that factors including age, livestock possession, extension service, education, family size, income, and access to credit are influencing the decision of such adoption. In addition to that, economic, technical, ecological and societal reasons were measured for establishing biogas plants. Therefore, this study recommends a change in government approaches and development of extension services, better promotions, adult education and credit facilities to adopt biogas technology in Bangladesh.

Suggested Citation

  • Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:rensus:v:123:y:2020:i:c:s1364032120300629
    DOI: 10.1016/j.rser.2020.109766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120300629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bala, B.K. & Hossain, M.M., 1992. "Economics of biogas digesters in Bangladesh," Energy, Elsevier, vol. 17(10), pages 939-944.
    2. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    3. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    4. Uhunamure, S.E. & Nethengwe, N.S. & Tinarwo, D., 2019. "Correlating the factors influencing household decisions on adoption and utilisation of biogas technology in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 264-273.
    5. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    6. Prasertsan, S. & Sajjakulnukit, B., 2006. "Biomass and biogas energy in Thailand: Potential, opportunity and barriers," Renewable Energy, Elsevier, vol. 31(5), pages 599-610.
    7. Cameron, Trudy Ann, 1988. "A new paradigm for valuing non-market goods using referendum data: Maximum likelihood estimation by censored logistic regression," Journal of Environmental Economics and Management, Elsevier, vol. 15(3), pages 355-379, September.
    8. Srinivasan, Sunderasan, 2008. "Positive externalities of domestic biogas initiatives: Implications for financing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1476-1484, June.
    9. Parajuli, Ranjan & Østergaard, Poul Alberg & Dalgaard, Tommy & Pokharel, Govind Raj, 2014. "Energy consumption projection of Nepal: An econometric approach," Renewable Energy, Elsevier, vol. 63(C), pages 432-444.
    10. Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
    11. Bora, Bhaskor J. & Saha, Ujjwal K., 2016. "Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios," Renewable Energy, Elsevier, vol. 87(P1), pages 782-790.
    12. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    13. Mengistu, Mulu Getachew & Simane, Belay & Eshete, Getachew & Workneh, Tilahun Seyoum, 2016. "Factors affecting households' decisions in biogas technology adoption, the case of Ofla and Mecha Districts, northern Ethiopia," Renewable Energy, Elsevier, vol. 93(C), pages 215-227.
    14. Kabir, H & Palash, M S & Bauer, S, 2012. "Appraisal of domestic biogas plants in Bangladesh," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 35(1-2).
    15. Amjid, Syed S. & Bilal, Muhammad Q. & Nazir, Muhammad S. & Hussain, Altaf, 2011. "Biogas, renewable energy resource for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2833-2837, August.
    16. Willeghems, Gwen & Buysse, Jeroen, 2016. "Changing old habits: The case of feeding patterns in anaerobic digesters," Renewable Energy, Elsevier, vol. 92(C), pages 212-221.
    17. Abbas, Tahir & Ali, Ghaffar & Adil, Sultan Ali & Bashir, Muhammad Khalid & Kamran, Muhammad Asif, 2017. "Economic analysis of biogas adoption technology by rural farmers: The case of Faisalabad district in Pakistan," Renewable Energy, Elsevier, vol. 107(C), pages 431-439.
    18. Qu, Wei & Tu, Qin & Bluemling, Bettina, 2013. "Which factors are effective for farmers’ biogas use?–Evidence from a large-scale survey in China," Energy Policy, Elsevier, vol. 63(C), pages 26-33.
    19. Ware, Aidan & Power, Niamh, 2016. "Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland," Renewable Energy, Elsevier, vol. 97(C), pages 541-549.
    20. Purohit, P & Kumar, A & Rana, S & Kandpal, T.C, 2002. "Using renewable energy technologies for domestic cooking in India: a methodology for potential estimation," Renewable Energy, Elsevier, vol. 26(2), pages 235-246.
    21. Simon Batchelor & Md. Arifur Rahman Talukder & Md. Raihan Uddin & Sandip Kumar Mondal & Shemim Islam & Rezwanul Karim Redoy & Rebecca Hanlin & M. Rezwan Khan, 2018. "Solar e-Cooking: A Proposition for Solar Home System Integrated Clean Cooking," Energies, MDPI, vol. 11(11), pages 1-14, October.
    22. Ehsanul Kabir & Ki-Hyun Kim & Jan E. Szulejko, 2017. "Social Impacts of Solar Home Systems in Rural Areas: A Case Study in Bangladesh," Energies, MDPI, vol. 10(10), pages 1-12, October.
    23. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    24. Reddy, K.S. & Aravindhan, S. & Mallick, Tapas K., 2016. "Investigation of performance and emission characteristics of a biogas fuelled electric generator integrated with solar concentrated photovoltaic system," Renewable Energy, Elsevier, vol. 92(C), pages 233-243.
    25. Atilgan, Burcin & Azapagic, Adisa, 2016. "Renewable electricity in Turkey: Life cycle environmental impacts," Renewable Energy, Elsevier, vol. 89(C), pages 649-657.
    26. Kabir, Humayun & Yegbemey, Rosaine N. & Bauer, Siegfried, 2013. "Factors determinant of biogas adoption in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 881-889.
    27. Ghimire, Prakash C., 2013. "SNV supported domestic biogas programmes in Asia and Africa," Renewable Energy, Elsevier, vol. 49(C), pages 90-94.
    28. Biswas, Wahidul K. & Lucas, N.J.D., 1997. "Economic viability of biogas technology in a Bangladesh village," Energy, Elsevier, vol. 22(8), pages 763-770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelique Mukasine & Louis Sibomana & Kayalvizhi Jayavel & Kizito Nkurikiyeyezu & Eric Hitimana, 2023. "Correlation Analysis Model of Environment Parameters Using IoT Framework in a Biogas Energy Generation Context," Future Internet, MDPI, vol. 15(8), pages 1-14, August.
    2. Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
    3. K M Mehedi Adnan & Liu Ying & Zeraibi Ayoub & Swati Anindita Sarker & Rashid Menhas & Feiyu Chen & Man (Mark) Yu, 2020. "Risk Management Strategies to Cope Catastrophic Risks in Agriculture: The Case of Contract Farming, Diversification and Precautionary Savings," Agriculture, MDPI, vol. 10(8), pages 1-16, August.
    4. Zhao Xin-gang & Wang Wei & Hu Shuran & Lu Wenjie, 2023. "How to Promote the Application of Biogas Power Technology: A Perspective of Incentive Policy," Energies, MDPI, vol. 16(4), pages 1-11, February.
    5. Ahmad, Munir & Khan, Irfan & Shahzad Khan, Muhammad Qaiser & Jabeen, Gul & Jabeen, Hafiza Samra & Işık, Cem, 2023. "Households' perception-based factors influencing biogas adoption: Innovation diffusion framework," Energy, Elsevier, vol. 263(PE).
    6. Ahmad, Munir & Wu, Yiyun, 2022. "Household-based factors affecting uptake of biogas plants in Bangladesh: Implications for sustainable development," Renewable Energy, Elsevier, vol. 194(C), pages 858-867.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas, Tahir & Ali, Ghaffar & Adil, Sultan Ali & Bashir, Muhammad Khalid & Kamran, Muhammad Asif, 2017. "Economic analysis of biogas adoption technology by rural farmers: The case of Faisalabad district in Pakistan," Renewable Energy, Elsevier, vol. 107(C), pages 431-439.
    2. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    3. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    4. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    5. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    6. Uhunamure, S.E. & Nethengwe, N.S. & Tinarwo, D., 2019. "Correlating the factors influencing household decisions on adoption and utilisation of biogas technology in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 264-273.
    7. Nazia Yasmin & Philipp Grundmann, 2019. "Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan," Energies, MDPI, vol. 12(16), pages 1-16, August.
    8. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    9. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    10. Roubík, Hynek & Mazancová, Jana & Rydval, Jan & Kvasnička, Roman, 2020. "Uncovering the dynamic complexity of the development of small–scale biogas technology through causal loops," Renewable Energy, Elsevier, vol. 149(C), pages 235-243.
    11. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    12. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    13. Mengistu, Mulu Getachew & Simane, Belay & Eshete, Getachew & Workneh, Tilahun Seyoum, 2016. "Factors affecting households' decisions in biogas technology adoption, the case of Ofla and Mecha Districts, northern Ethiopia," Renewable Energy, Elsevier, vol. 93(C), pages 215-227.
    14. Solomon E. Uhunamure & Nthaduleni S. Nethengwe & David Tinarwo, 2021. "Development of a Comprehensive Conceptual Framework for Biogas Technology Adoption in South Africa," Resources, MDPI, vol. 10(8), pages 1-21, July.
    15. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    16. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    17. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    18. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    19. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    20. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:123:y:2020:i:c:s1364032120300629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.