IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2933-d178666.html
   My bibliography  Save this article

Solar e-Cooking: A Proposition for Solar Home System Integrated Clean Cooking

Author

Listed:
  • Simon Batchelor

    (Gamos Limited, Reading RG1 4LS, UK)

  • Md. Arifur Rahman Talukder

    (Department of EEE, United International University, Dhaka 1212, Bangladesh)

  • Md. Raihan Uddin

    (Department of EEE, United International University, Dhaka 1212, Bangladesh)

  • Sandip Kumar Mondal

    (Department of EEE, United International University, Dhaka 1212, Bangladesh)

  • Shemim Islam

    (Department of EEE, United International University, Dhaka 1212, Bangladesh)

  • Rezwanul Karim Redoy

    (Department of EEE, United International University, Dhaka 1212, Bangladesh)

  • Rebecca Hanlin

    (African Centre for Technology Studies, Nairobi 00100, Kenya)

  • M. Rezwan Khan

    (Department of EEE, United International University, Dhaka 1212, Bangladesh)

Abstract

This paper presents the feasibility of using solar photovoltaics (Solar PV) as the energy source for cooking with special focus on the loss mechanisms and possible remedial measures. If the heat loss is minimized, to reduce the temperature losses, it is possible to cook with a low power source less than 500 W. A slogan has been adopted by the researchers—‘It is temperature that cooks food not heat’, meaning that it is not the flow of energy that cooks food, but rather, that food is cooked when held at a key temperature for a time. The slogan draws attention to the core concept that if heat loss is minimized, maintaining the temperature inside the cooker and the cooking pan, then the cooking process becomes very energy efficient. The paper considers ways to maintain temperature, but with due reference to the ‘art of cooking’, those all-important cultural processes that determine how meals are made. A prototype solar home system e-cooker was designed, fabricated and tested for cooking different foods in Bangladesh. Experimental results are presented to show that cooking is possible using much less power and energy than is commonly thought. A cost analysis is also presented to show that such a cooker can be cost effective in off-grid areas if connected to a properly designed Solar Home System.

Suggested Citation

  • Simon Batchelor & Md. Arifur Rahman Talukder & Md. Raihan Uddin & Sandip Kumar Mondal & Shemim Islam & Rezwanul Karim Redoy & Rebecca Hanlin & M. Rezwan Khan, 2018. "Solar e-Cooking: A Proposition for Solar Home System Integrated Clean Cooking," Energies, MDPI, vol. 11(11), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2933-:d:178666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    2. Muthusivagami, R.M. & Velraj, R. & Sethumadhavan, R., 2010. "Solar cookers with and without thermal storage--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 691-701, February.
    3. Kirubi, Charles & Jacobson, Arne & Kammen, Daniel M. & Mills, Andrew, 2009. "Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya," World Development, Elsevier, vol. 37(7), pages 1208-1221, July.
    4. Ravindranath, N. H. & Ramakrishna, J., 1997. "Energy options for cooking in India," Energy Policy, Elsevier, vol. 25(1), pages 63-75, January.
    5. Ehsanul Kabir & Ki-Hyun Kim & Jan E. Szulejko, 2017. "Social Impacts of Solar Home Systems in Rural Areas: A Case Study in Bangladesh," Energies, MDPI, vol. 10(10), pages 1-12, October.
    6. Kurata, Masamitsu & Matsui, Noriatsu & Ikemoto, Yukio & Tsuboi, Hiromi, 2018. "Do determinants of adopting solar home systems differ between households and micro-enterprises? Evidence from rural Bangladesh," Renewable Energy, Elsevier, vol. 129(PA), pages 309-316.
    7. Cundale, Katie & Thomas, Ranjeeta & Malava, Jullita Kenala & Havens, Deborah & Mortimer, Kevin & Conteh, Lesong, 2017. "A health intervention or a kitchen appliance? Household costs and benefits of a cleaner burning biomass-fuelled cookstove in Malawi," Social Science & Medicine, Elsevier, vol. 183(C), pages 1-10.
    8. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leary, Jon & Leach, Matthew & Batchelor, Simon & Scott, Nigel & Brown, Ed, 2021. "Battery-supported eCooking: A transformative opportunity for 2.6 billion people who still cook with biomass," Energy Policy, Elsevier, vol. 159(C).
    2. Jon Leary & Bridget Menyeh & Vimbai Chapungu & Karin Troncoso, 2021. "eCooking: Challenges and Opportunities from a Consumer Behaviour Perspective," Energies, MDPI, vol. 14(14), pages 1-27, July.
    3. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    2. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    3. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    4. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    6. Swati Anindita Sarker & Shouyang Wang & K M Mehedi Adnan & Muhammad Khalid Anser & Zeraibi Ayoub & Thu Hau Ho & Riffat Ara Zannat Tama & Anna Trunina & Md Mahmudul Hoque, 2020. "Economic Viability and Socio-Environmental Impacts of Solar Home Systems for Off-Grid Rural Electrification in Bangladesh," Energies, MDPI, vol. 13(3), pages 1-15, February.
    7. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    8. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    9. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    10. Sanghyun Sung & Wooyong Jung, 2019. "Economic Competitiveness Evaluation of the Energy Sources: Comparison between a Financial Model and Levelized Cost of Electricity Analysis," Energies, MDPI, vol. 12(21), pages 1-21, October.
    11. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
    12. Barzegkar-Ntovom, Georgios A. & Chatzigeorgiou, Nikolas G. & Nousdilis, Angelos I. & Vomva, Styliani A. & Kryonidis, Georgios C. & Kontis, Eleftherios O. & Georghiou, George E. & Christoforidis, Georg, 2020. "Assessing the viability of battery energy storage systems coupled with photovoltaics under a pure self-consumption scheme," Renewable Energy, Elsevier, vol. 152(C), pages 1302-1309.
    13. Emily Prehoda & Joshua M. Pearce & Chelsea Schelly, 2019. "Policies to Overcome Barriers for Renewable Energy Distributed Generation: A Case Study of Utility Structure and Regulatory Regimes in Michigan," Energies, MDPI, vol. 12(4), pages 1-23, February.
    14. Ranaboldo, Matteo & Ferrer-Martí, Laia & García-Villoria, Alberto & Pastor Moreno, Rafael, 2013. "Heuristic indicators for the design of community off-grid electrification systems based on multiple renewable energies," Energy, Elsevier, vol. 50(C), pages 501-512.
    15. Hayibo, Koami Soulemane & Pearce, Joshua M., 2021. "A review of the value of solar methodology with a case study of the U.S. VOS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    17. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    18. Bartosz Soltowski & David Campos-Gaona & Scott Strachan & Olimpo Anaya-Lara, 2019. "Bottom-Up Electrification Introducing New Smart Grids Architecture—Concept Based on Feasibility Studies Conducted in Rwanda," Energies, MDPI, vol. 12(12), pages 1-19, June.
    19. Chul-Yong Lee & Jaekyun Ahn, 2020. "Stochastic Modeling of the Levelized Cost of Electricity for Solar PV," Energies, MDPI, vol. 13(11), pages 1-18, June.
    20. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2933-:d:178666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.