IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v145y2021ics136403212100455x.html
   My bibliography  Save this article

Advances in the developments of solar cooker for sustainable development: A comprehensive review

Author

Listed:
  • Khatri, Rahul
  • Goyal, Rahul
  • Sharma, Ravi Kumar

Abstract

The depletion of conventional energy sources and their adverse effects on the environment have fetched the attention of global researchers on the renewable sources of energy. Solar energy is freely and abundantly available and can be effectively utilized in many domestic/industrial applications. Cooking being one of the biggest consumers of energy is an essential component of human lives. Using wood or cow dung as primary source of thermal energy for cooking lead to harmful pollution and unhealthy global environment. The cooking utilizing the solar energy has evolved with many updates over the last few decades.

Suggested Citation

  • Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:rensus:v:145:y:2021:i:c:s136403212100455x
    DOI: 10.1016/j.rser.2021.111166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100455X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapoor, Karan & Pandey, Krishan K. & Jain, A.K. & Nandan, Ashish, 2014. "Evolution of solar energy in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 475-487.
    2. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
    3. Vanschoenwinkel, Janka & Lizin, Sebastien & Swinnen, Gilbert & Azadi, Hossein & Van Passel, Steven, 2014. "Solar cooking in Senegalese villages: An application of best–worst scaling," Energy Policy, Elsevier, vol. 67(C), pages 447-458.
    4. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    5. Regattieri, Alberto & Piana, Francesco & Bortolini, Marco & Gamberi, Mauro & Ferrari, Emilio, 2016. "Innovative portable solar cooker using the packaging waste of humanitarian supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 319-326.
    6. Onokwai, Anthony O. & Okonkwo, Ugochukwu C. & Osueke, Christian O. & Okafor, Christian E. & Olayanju, Tajudeen M.A. & Dahunsi, Samuel, O., 2019. "Design, modelling, energy and exergy analysis of a parabolic cooker," Renewable Energy, Elsevier, vol. 142(C), pages 497-510.
    7. Edmonds, Ian, 2018. "Low cost realisation of a high temperature solar cooker," Renewable Energy, Elsevier, vol. 121(C), pages 94-101.
    8. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    9. Zhou, Zhihua & Zhang, Zhiming & Zuo, Jian & Huang, Ke & Zhang, Liying, 2015. "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 692-703.
    10. Harmim, A. & Merzouk, M. & Boukar, M. & Amar, M., 2012. "Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator," Energy, Elsevier, vol. 47(1), pages 471-480.
    11. Sharma, Atul & Chen, C.R. & Murty, V.V.S. & Shukla, Anant, 2009. "Solar cooker with latent heat storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1599-1605, August.
    12. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    13. Kumar, Naveen & Agravat, Sagar & Chavda, Tilak & Mistry, H.N., 2008. "Design and development of efficient multipurpose domestic solar cookers/dryers," Renewable Energy, Elsevier, vol. 33(10), pages 2207-2211.
    14. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    15. Kumar, Subodh, 2005. "Estimation of design parameters for thermal performance evaluation of box-type solar cooker," Renewable Energy, Elsevier, vol. 30(7), pages 1117-1126.
    16. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    17. Abd-Elhady, M.S. & Abd-Elkerim, A.N.A. & Ahmed, Seif A. & Halim, M.A. & Abu-Oqual, Ahmed, 2020. "Study the thermal performance of solar cookers by using metallic wires and nanographene," Renewable Energy, Elsevier, vol. 153(C), pages 108-116.
    18. Otte, Pia Piroschka, 2014. "Solar cooking in Mozambique—an investigation of end-user׳s needs for the design of solar cookers," Energy Policy, Elsevier, vol. 74(C), pages 366-375.
    19. Mahavar, S. & Rajawat, P. & Punia, R.C. & Sengar, N. & Dashora, P., 2015. "Evaluating the optimum load range for box-type solar cookers," Renewable Energy, Elsevier, vol. 74(C), pages 187-194.
    20. Kumaresan, G. & Santosh, R. & Raju, G. & Velraj, R., 2018. "Experimental and numerical investigation of solar flat plate cooking unit for domestic applications," Energy, Elsevier, vol. 157(C), pages 436-447.
    21. Muthusivagami, R.M. & Velraj, R. & Sethumadhavan, R., 2010. "Solar cookers with and without thermal storage--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 691-701, February.
    22. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    23. Singh, Tejvir & Hussien, Muataz Ali Atieh & Al-Ansari, Tareq & Saoud, Khaled & McKay, Gordon, 2018. "Critical review of solar thermal resources in GCC and application of nanofluids for development of efficient and cost effective CSP technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 708-719.
    24. Pohekar, S.D. & Ramachandran, M., 2006. "Utility assessment of parabolic solar cooker as a domestic cooking device in India," Renewable Energy, Elsevier, vol. 31(11), pages 1827-1838.
    25. Mirdha, U.S. & Dhariwal, S.R., 2008. "Design optimization of solar cooker," Renewable Energy, Elsevier, vol. 33(3), pages 530-544.
    26. Hosseinzadeh, Mohammad & Sadeghirad, Reza & Zamani, Hosein & Kianifar, Ali & Mirzababaee, Seyyed Mahdi, 2021. "The performance improvement of an indirect solar cooker using multi-walled carbon nanotube-oil nanofluid: An experimental study with thermodynamic analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 14-24.
    27. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    28. Nahar, N.M, 2001. "Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material," Renewable Energy, Elsevier, vol. 23(2), pages 167-179.
    29. Dawn, Subhojit & Tiwari, Prashant Kumar & Goswami, Arup Kumar & Mishra, Manash Kumar, 2016. "Recent developments of solar energy in India: Perspectives, strategies and future goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 215-235.
    30. Nkhonjera, Lameck & Bello-Ochende, Tunde & John, Geoffrey & King’ondu, Cecil K., 2017. "A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 157-167.
    31. Otte, Pia Piroschka, 2013. "Solar cookers in developing countries—What is their key to success?," Energy Policy, Elsevier, vol. 63(C), pages 375-381.
    32. Prasanna, U.R. & Umanand, L., 2011. "Modeling and design of a solar thermal system for hybrid cooking application," Applied Energy, Elsevier, vol. 88(5), pages 1740-1755, May.
    33. Banerjee, Manjushree & Prasad, Rakesh & Rehman, Ibrahim H & Gill, Bigsna, 2016. "Induction stoves as an option for clean cooking in rural India," Energy Policy, Elsevier, vol. 88(C), pages 159-167.
    34. Panwar, N.L. & Kothari, Surendra & Kaushik, S.C., 2013. "Techno-economic evaluation of masonry type animal feed solar cooker in rural areas of an Indian state Rajasthan," Energy Policy, Elsevier, vol. 52(C), pages 583-586.
    35. Sonune, A.V & Philip, S.K, 2003. "Development of a domestic concentrating cooker," Renewable Energy, Elsevier, vol. 28(8), pages 1225-1234.
    36. Farooqui, Suhail Zaki, 2015. "Impact of load variation on the energy and exergy efficiencies of a single vacuum tube based solar cooker," Renewable Energy, Elsevier, vol. 77(C), pages 152-158.
    37. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    38. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    39. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    40. Gaur, A & Singh, O.P & Singh, S.K & Pandey, G.N, 1999. "Performance study of solar cooker with modified utensil," Renewable Energy, Elsevier, vol. 18(1), pages 121-129.
    41. Indora, Sunil & Kandpal, Tara C., 2019. "A framework for analyzing impact of potential financial/fiscal incentives for promoting institutional solar cooking in India," Renewable Energy, Elsevier, vol. 143(C), pages 1531-1543.
    42. Pohekar, S.D. & Kumar, Dinesh & Ramachandran, M., 2005. "Dissemination of cooking energy alternatives in India--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 379-393, August.
    43. Zamani, Hosein & Moghiman, Mohammad & Kianifar, Ali, 2015. "Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM)," Renewable Energy, Elsevier, vol. 81(C), pages 753-759.
    44. Kar, Sanjay Kumar & Sharma, Atul & Roy, Biswajit, 2016. "Solar energy market developments in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 121-133.
    45. Ravindranath, N. H. & Ramakrishna, J., 1997. "Energy options for cooking in India," Energy Policy, Elsevier, vol. 25(1), pages 63-75, January.
    46. Hosseinzadeh, Mohammad & Faezian, Ali & Mirzababaee, Seyyed Mahdi & Zamani, Hosein, 2020. "Parametric analysis and optimization of a portable evacuated tube solar cooker," Energy, Elsevier, vol. 194(C).
    47. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    48. Mahavar, S. & Sengar, N. & Rajawat, P. & Verma, M. & Dashora, P., 2012. "Design development and performance studies of a novel Single Family Solar Cooker," Renewable Energy, Elsevier, vol. 47(C), pages 67-76.
    49. de Escobar, E.M., 1996. "Low budget solar cookers: An alternative to diminish the use of wood as a source of fuel," Renewable Energy, Elsevier, vol. 9(1), pages 754-757.
    50. Lecuona, Antonio & Nogueira, José-Ignacio & Ventas, Rubén & Rodríguez-Hidalgo, María-del-Carmen & Legrand, Mathieu, 2013. "Solar cooker of the portable parabolic type incorporating heat storage based on PCM," Applied Energy, Elsevier, vol. 111(C), pages 1136-1146.
    51. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    52. Murali, S. & Amulya, P.R. & Alfiya, P.V. & Delfiya, D.S. Aniesrani & Samuel, Manoj P., 2020. "Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps," Renewable Energy, Elsevier, vol. 147(P1), pages 2417-2428.
    53. Pandey, Shreemat & Singh, Vijai Shanker & Gangwar, Naresh Pal & Vijayvergia, M.M. & Prakash, Chandra & Pandey, Deep Narayan, 2012. "Determinants of success for promoting solar energy in Rajasthan, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3593-3598.
    54. Purohit, Ishan, 2010. "Testing of solar cookers and evaluation of instrumentation error," Renewable Energy, Elsevier, vol. 35(9), pages 2053-2064.
    55. Al-Soud, Mohammed S. & Abdallah, Essam & Akayleh, Ali & Abdallah, Salah & Hrayshat, Eyad S., 2010. "A parabolic solar cooker with automatic two axes sun tracking system," Applied Energy, Elsevier, vol. 87(2), pages 463-470, February.
    56. Valmiki, M.M. & Li, Peiwen & Heyer, Javier & Morgan, Matthew & Albinali, Abdulla & Alhamidi, Kamal & Wagoner, Jeremy, 2011. "A novel application of a Fresnel lens for a solar stove and solar heating," Renewable Energy, Elsevier, vol. 36(5), pages 1614-1620.
    57. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    58. Singh, Amritpal & Vats, Gaurav & Khanduja, Dinesh, 2016. "Exploring tapping potential of solar energy: Prioritization of Indian states," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 397-406.
    59. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    60. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    61. Chen, C.R. & Sharma, Atul & Tyagi, S.K. & Buddhi, D., 2008. "Numerical heat transfer studies of PCMs used in a box-type solar cooker," Renewable Energy, Elsevier, vol. 33(5), pages 1121-1129.
    62. Abdelsalam, M.Y. & Teamah, H.M. & Lightstone, M.F. & Cotton, J.S., 2020. "Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems," Renewable Energy, Elsevier, vol. 147(P1), pages 77-88.
    63. Prasanna, U.R. & Umanand, L., 2011. "Optimization and design of energy transport system for solar cooking application," Applied Energy, Elsevier, vol. 88(1), pages 242-251, January.
    64. Sahu, Bikash Kumar, 2016. "Solar energy developments, policies and future prospectus in the state of Odisha, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 526-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aquilanti, Alessia & Tomassetti, Sebastiano & Muccioli, Matteo & Di Nicola, Giovanni, 2023. "Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors," Renewable Energy, Elsevier, vol. 202(C), pages 405-418.
    2. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Gowthami, D. & Sharma, R.K., 2023. "Influence of Hydrophilic and Hydrophobic modification of the porous matrix on the thermal performance of form stable phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    5. Mulako D. Mukelabai & K. G. U. Wijayantha & Richard E. Blanchard, 2022. "Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    6. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    2. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    3. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    4. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    5. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.
    7. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    8. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.
    9. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    10. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    11. Ashmore Mawire & Sibongiseni M. Simelane & Patrick O. Abedigamba, 2021. "Energetic and exergetic performance comparison of three solar cookers for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14528-14555, October.
    12. Regattieri, Alberto & Piana, Francesco & Bortolini, Marco & Gamberi, Mauro & Ferrari, Emilio, 2016. "Innovative portable solar cooker using the packaging waste of humanitarian supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 319-326.
    13. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    14. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    15. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    16. Lecuona, Antonio & Nogueira, José-Ignacio & Ventas, Rubén & Rodríguez-Hidalgo, María-del-Carmen & Legrand, Mathieu, 2013. "Solar cooker of the portable parabolic type incorporating heat storage based on PCM," Applied Energy, Elsevier, vol. 111(C), pages 1136-1146.
    17. Liyew, Kassa W. & Habtu, Nigus G. & Louvet, Yoann & Guta, Dawit D. & Jordan, Ulrike, 2021. "Technical design, costs, and greenhouse gas emissions of solar Injera baking stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Nkhonjera, Lameck & Bello-Ochende, Tunde & John, Geoffrey & King’ondu, Cecil K., 2017. "A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 157-167.
    19. Palanikumar, G. & Shanmugan, S. & Chithambaram, V. & Gorjian, Shiva & Pruncu, Catalin I. & Essa, F.A. & Kabeel, A.E. & Panchal, Hitesh & Janarthanan, B. & Ebadi, Hossein & Elsheikh, Ammar H. & Selvara, 2021. "Thermal investigation of a solar box-type cooker with nanocomposite phase change materials using flexible thermography," Renewable Energy, Elsevier, vol. 178(C), pages 260-282.
    20. Nandal, Vinod & Kumar, Raj & Singh, S.K., 2019. "Barriers identification and analysis of solar power implementation in Indian thermal power plants: An Interpretative Structural Modeling approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:145:y:2021:i:c:s136403212100455x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.