IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v18y1999i1p121-129.html
   My bibliography  Save this article

Performance study of solar cooker with modified utensil

Author

Listed:
  • Gaur, A
  • Singh, O.P
  • Singh, S.K
  • Pandey, G.N

Abstract

A performance study of the box-type solar cooker was made with special emphasis on the shape of lid of the utensils used in a solar cooker. The study revealed that the performance of a solar cooker can be improved if a utensil with a concave shape lid is used instead of a plain lid, generally provided with the solar cooker. The stagnation temperature for a utensil having a concave lid was about 2–7% more than the utensil with a normal lid. The time required for heating the water up to the same temperature in both the utensils was reduced by about 1–13% when a concave shape lid was used.

Suggested Citation

  • Gaur, A & Singh, O.P & Singh, S.K & Pandey, G.N, 1999. "Performance study of solar cooker with modified utensil," Renewable Energy, Elsevier, vol. 18(1), pages 121-129.
  • Handle: RePEc:eee:renene:v:18:y:1999:i:1:p:121-129
    DOI: 10.1016/S0960-1481(98)00762-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148198007629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(98)00762-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    2. Harmim, A. & Belhamel, M. & Boukar, M. & Amar, M., 2010. "Experimental investigation of a box-type solar cooker with a finned absorber plate," Energy, Elsevier, vol. 35(9), pages 3799-3802.
    3. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    4. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    5. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    6. Bansal, Mohit & Saini, R.P. & Khatod, D.K., 2013. "Development of cooking sector in rural areas in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 44-53.
    7. Kumaresan, G. & Santosh, R. & Raju, G. & Velraj, R., 2018. "Experimental and numerical investigation of solar flat plate cooking unit for domestic applications," Energy, Elsevier, vol. 157(C), pages 436-447.
    8. Cadavid, Francisco J. & Cadavid, Yonatan & Amell, Andrés A. & Arrieta, Andrés E. & Echavarría, Juan D., 2014. "Numerical and experimental methodology to measure the thermal efficiency of pots on electrical stoves," Energy, Elsevier, vol. 73(C), pages 258-263.
    9. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    10. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    11. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    12. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:18:y:1999:i:1:p:121-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.