IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i10p2207-2211.html
   My bibliography  Save this article

Design and development of efficient multipurpose domestic solar cookers/dryers

Author

Listed:
  • Kumar, Naveen
  • Agravat, Sagar
  • Chavda, Tilak
  • Mistry, H.N.

Abstract

A truncated pyramid-type solar cooker is designed, fabricated and tested. The truncated pyramid geometry concentrates the incident light radiations towards the bottom and the glazing glass surface on the top facilitates the trapping of energy inside the cooker. One of the salient features of the proposed design is to completely eradicate the need for tracking the sun during cooking, as tracking of sun does not yield better performance. During testing, the highest plate stagnation temperature, under no-load condition, approached 140°C and under full-load condition, water temperature inside the cooker reached 98.6°C in 70min. Two figures of merit, F1 and F2, were calculated and their values were 0.117°Cm2/W and 0.467°Cl, respectively, meeting the standards prescribed by the Bureau of Indian Standards for solar box-type cookers. Minor modifications in design are recommended to achieve higher temperatures and reduce cooking times. The design also allows trays to be retained for use as a household dryer.

Suggested Citation

  • Kumar, Naveen & Agravat, Sagar & Chavda, Tilak & Mistry, H.N., 2008. "Design and development of efficient multipurpose domestic solar cookers/dryers," Renewable Energy, Elsevier, vol. 33(10), pages 2207-2211.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:10:p:2207-2211
    DOI: 10.1016/j.renene.2008.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108000128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonune, A.V & Philip, S.K, 2003. "Development of a domestic concentrating cooker," Renewable Energy, Elsevier, vol. 28(8), pages 1225-1234.
    2. Patel, N.V & Philip, S.K, 2000. "Performance evaluation of three solar concentrating cookers," Renewable Energy, Elsevier, vol. 20(3), pages 347-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    2. Ashmore Mawire & Sibongiseni M. Simelane & Patrick O. Abedigamba, 2021. "Energetic and exergetic performance comparison of three solar cookers for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14528-14555, October.
    3. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    4. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    5. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    6. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    7. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2011. "An exergy based test protocol for truncated pyramid type solar box cooker," Energy, Elsevier, vol. 36(9), pages 5710-5715.
    8. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    9. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    10. Mahavar, S. & Rajawat, P. & Punia, R.C. & Sengar, N. & Dashora, P., 2015. "Evaluating the optimum load range for box-type solar cookers," Renewable Energy, Elsevier, vol. 74(C), pages 187-194.
    11. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    12. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Mahavar, S. & Sengar, N. & Rajawat, P. & Verma, M. & Dashora, P., 2012. "Design development and performance studies of a novel Single Family Solar Cooker," Renewable Energy, Elsevier, vol. 47(C), pages 67-76.
    14. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecuona, Antonio & Nogueira, José-Ignacio & Ventas, Rubén & Rodríguez-Hidalgo, María-del-Carmen & Legrand, Mathieu, 2013. "Solar cooker of the portable parabolic type incorporating heat storage based on PCM," Applied Energy, Elsevier, vol. 111(C), pages 1136-1146.
    2. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    3. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Purohit, Ishan, 2010. "Testing of solar cookers and evaluation of instrumentation error," Renewable Energy, Elsevier, vol. 35(9), pages 2053-2064.
    5. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    6. Al-Soud, Mohammed S. & Abdallah, Essam & Akayleh, Ali & Abdallah, Salah & Hrayshat, Eyad S., 2010. "A parabolic solar cooker with automatic two axes sun tracking system," Applied Energy, Elsevier, vol. 87(2), pages 463-470, February.
    7. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    8. El-Sebaii, A.A. & Ibrahim, A., 2005. "Experimental testing of a box-type solar cooker using the standard procedure of cooking power," Renewable Energy, Elsevier, vol. 30(12), pages 1861-1871.
    9. Edmonds, Ian, 2018. "Low cost realisation of a high temperature solar cooker," Renewable Energy, Elsevier, vol. 121(C), pages 94-101.
    10. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    11. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    12. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    13. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    14. Abraham, J.P. & Plourde, B.D. & Minkowycz, W.J., 2015. "Continuous flow solar thermal pasteurization of drinking water: Methods, devices, microbiology, and analysis," Renewable Energy, Elsevier, vol. 81(C), pages 795-803.
    15. Kumar, Subodh, 2005. "Estimation of design parameters for thermal performance evaluation of box-type solar cooker," Renewable Energy, Elsevier, vol. 30(7), pages 1117-1126.
    16. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    17. Ashmore Mawire & Sibongiseni M. Simelane & Patrick O. Abedigamba, 2021. "Energetic and exergetic performance comparison of three solar cookers for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14528-14555, October.
    18. Sonune, A.V & Philip, S.K, 2003. "Development of a domestic concentrating cooker," Renewable Energy, Elsevier, vol. 28(8), pages 1225-1234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:10:p:2207-2211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.