IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v67y2014icp447-458.html
   My bibliography  Save this article

Solar cooking in Senegalese villages: An application of best–worst scaling

Author

Listed:
  • Vanschoenwinkel, Janka
  • Lizin, Sebastien
  • Swinnen, Gilbert
  • Azadi, Hossein
  • Van Passel, Steven

Abstract

Dissemination programs of nontraditional cookstoves often fail. Nontraditional cookstoves aim to solve problems associated with biomass fuel usage in developing countries. Recent studies do not explain what drives user's cookstove choice. This study therefore builds a holistic framework that centralizes product-specific preferences or needs. The case study identifies product-specific factors that influence rural Senegalese inhabitants to switch to solar cooking, using best–worst scaling. Looking at the preferences, the case study classified 126 respondents, in three distinct market segments with different solar cooking expectations. The paper identifies socio-demographic characteristics that explain these differences in the respondents' preferences. Finally, the respondent sample is divided in two groups: solar cooker owners and non-owners. When studied with regard to the same issue, solar cooker owners appear to value benefits of the solar cooker lower than non-owners. This is due to program factors (such as formations, after-sales network) and miscommunication (such as a wrong image of the solar cooker) that highly influenced the respondents' cookstove choice. As a conclusion, solar cookers and solar cooking programs are not always adapted to the needs and requirements of the end-users. Needs-oriented and end-user adopted strategies are necessary in order to successfully implement nontraditional cookstoves programs.

Suggested Citation

  • Vanschoenwinkel, Janka & Lizin, Sebastien & Swinnen, Gilbert & Azadi, Hossein & Van Passel, Steven, 2014. "Solar cooking in Senegalese villages: An application of best–worst scaling," Energy Policy, Elsevier, vol. 67(C), pages 447-458.
  • Handle: RePEc:eee:enepol:v:67:y:2014:i:c:p:447-458
    DOI: 10.1016/j.enpol.2013.12.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513012822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.12.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azadi, Hossein & de Jong, Sanne & Derudder, Ben & De Maeyer, Philippe & Witlox, Frank, 2012. "Bitter sweet: How sustainable is bio-ethanol production in Brazil?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3599-3603.
    2. Gill, Jas, 1987. "Improved stoves in developing countries : A critique," Energy Policy, Elsevier, vol. 15(2), pages 135-144, April.
    3. Ruiz-Mercado, Ilse & Masera, Omar & Zamora, Hilda & Smith, Kirk R., 2011. "Adoption and sustained use of improved cookstoves," Energy Policy, Elsevier, vol. 39(12), pages 7557-7566.
    4. Beyene, Abebe D. & Koch, Steven F., 2013. "Clean fuel-saving technology adoption in urban Ethiopia," Energy Economics, Elsevier, vol. 36(C), pages 605-613.
    5. Subhrendu K. Pattanayak & Alexander Pfaff, 2009. "Behavior, Environment, and Health in Developing Countries: Evaluation and Valuation," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 183-217, September.
    6. Flynn, Terry N. & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2007. "Best-worst scaling: What it can do for health care research and how to do it," Journal of Health Economics, Elsevier, vol. 26(1), pages 171-189, January.
    7. Pat Auger & Timothy Devinney & Jordan Louviere, 2007. "Using Best–Worst Scaling Methodology to Investigate Consumer Ethical Beliefs Across Countries," Journal of Business Ethics, Springer, vol. 70(3), pages 299-326, February.
    8. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    9. Tucker, Michael, 1999. "Can solar cooking save the forests?," Ecological Economics, Elsevier, vol. 31(1), pages 77-89, October.
    10. Achtnicht, Martin, 2011. "Do environmental benefits matter? Evidence from a choice experiment among house owners in Germany," Ecological Economics, Elsevier, vol. 70(11), pages 2191-2200, September.
    11. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D. With contributions by-Name:Adamowicz,Wiktor, 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304.
    12. Pohekar, S.D. & Kumar, Dinesh & Ramachandran, M., 2005. "Dissemination of cooking energy alternatives in India--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 379-393, August.
    13. Budya, Hanung & Yasir Arofat, Muhammad, 2011. "Providing cleaner energy access in Indonesia through the megaproject of kerosene conversion to LPG," Energy Policy, Elsevier, vol. 39(12), pages 7575-7586.
    14. Potoglou, Dimitris & Burge, Peter & Flynn, Terry & Netten, Ann & Malley, Juliette & Forder, Julien & Brazier, John E., 2011. "Best-worst scaling vs. discrete choice experiments: An empirical comparison using social care data," Social Science & Medicine, Elsevier, vol. 72(10), pages 1717-1727, May.
    15. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    16. Troncoso, Karin & Castillo, Alicia & Merino, Leticia & Lazos, Elena & Masera, Omar R., 2011. "Understanding an improved cookstove program in rural Mexico: An analysis from the implementers' perspective," Energy Policy, Elsevier, vol. 39(12), pages 7600-7608.
    17. Grieshop, Andrew P. & Marshall, Julian D. & Kandlikar, Milind, 2011. "Health and climate benefits of cookstove replacement options," Energy Policy, Elsevier, vol. 39(12), pages 7530-7542.
    18. Foell, Wesley & Pachauri, Shonali & Spreng, Daniel & Zerriffi, Hisham, 2011. "Household cooking fuels and technologies in developing economies," Energy Policy, Elsevier, vol. 39(12), pages 7487-7496.
    19. Gupta, Gautam & Kohlin, Gunnar, 2006. "Preferences for domestic fuel: Analysis with socio-economic factors and rankings in Kolkata, India," Ecological Economics, Elsevier, vol. 57(1), pages 107-121, April.
    20. Parikh, Jyoti, 2011. "Hardships and health impacts on women due to traditional cooking fuels: A case study of Himachal Pradesh, India," Energy Policy, Elsevier, vol. 39(12), pages 7587-7594.
    21. Michael Lockwood, 1996. "Non‐Compensatory Preference Structures In Non‐Market Valuation Of Natural Area Policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 40(2), pages 85-101, August.
    22. Akpalu, Wisdom & Dasmani, Isaac & Aglobitse, Peter B., 2011. "Demand for cooking fuels in a developing country: To what extent do taste and preferences matter?," Energy Policy, Elsevier, vol. 39(10), pages 6525-6531, October.
    23. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    24. Lockwood, Michael, 1996. "Non-Compensatory Preference Structures In Non-Market Valuation Of Natural Area Policy," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 40(2), pages 1-17, August.
    25. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    26. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    27. Troncoso, Karin & Castillo, Alicia & Masera, Omar & Merino, Leticia, 2007. "Social perceptions about a technological innovation for fuelwood cooking: Case study in rural Mexico," Energy Policy, Elsevier, vol. 35(5), pages 2799-2810, May.
    28. Otte, Pia Piroschka, 2013. "Solar cookers in developing countries—What is their key to success?," Energy Policy, Elsevier, vol. 63(C), pages 375-381.
    29. Heltberg, Rasmus, 2004. "Fuel switching: evidence from eight developing countries," Energy Economics, Elsevier, vol. 26(5), pages 869-887, September.
    30. Mantel, Susan Powell & Kardes, Frank R, 1999. "The Role of Direction of Comparison, Attribute-Based Processing, and Attitude-Based Processing in Consumer Preference," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(4), pages 335-352, March.
    31. Shrimali, Gireesh & Slaski, Xander & Thurber, Mark C. & Zerriffi, Hisham, 2011. "Improved stoves in India: A study of sustainable business models," Energy Policy, Elsevier, vol. 39(12), pages 7543-7556.
    32. Gundimeda, Haripriya & Kohlin, Gunnar, 2008. "Fuel demand elasticities for energy and environmental policies: Indian sample survey evidence," Energy Economics, Elsevier, vol. 30(2), pages 517-546, March.
    33. Wentzel, Marlett & Pouris, Anastassios, 2007. "The development impact of solar cookers: A review of solar cooking impact research in South Africa," Energy Policy, Elsevier, vol. 35(3), pages 1909-1919, March.
    34. Panwar, N.L. & Kothari, Surendra & Kaushik, S.C., 2013. "Techno-economic evaluation of masonry type animal feed solar cooker in rural areas of an Indian state Rajasthan," Energy Policy, Elsevier, vol. 52(C), pages 583-586.
    35. Kees, Marlis & Feldmann, Lisa, 2011. "The role of donor organisations in promoting energy efficient cook stoves," Energy Policy, Elsevier, vol. 39(12), pages 7595-7599.
    36. Carmody, Ellie R. & Sarkar, Amin U., 1997. "Solar box cookers: Towards a decentralized sustainable energy strategy for sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(4), pages 291-301, December.
    37. Mika Rekola, 2003. "Lexicographic Preferences in Contingent Valuation: A Theoretical Framework with Illustrations," Land Economics, University of Wisconsin Press, vol. 79(2), pages 277-291.
    38. Smith, Kirk R. & Shuhua, Gu & Kun, Huang & Daxiong, Qiu, 1993. "One hundred million improved cookstoves in China: How was it done?," World Development, Elsevier, vol. 21(6), pages 941-961, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    2. Friebe, Christian A. & von Flotow, Paschen & Täube, Florian A., 2014. "Exploring technology diffusion in emerging markets – the role of public policy for wind energy," Energy Policy, Elsevier, vol. 70(C), pages 217-226.
    3. Regattieri, Alberto & Piana, Francesco & Bortolini, Marco & Gamberi, Mauro & Ferrari, Emilio, 2016. "Innovative portable solar cooker using the packaging waste of humanitarian supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 319-326.
    4. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    5. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    6. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Lindgren, Samantha, 2021. "Cookstove implementation and Education for Sustainable Development: A review of the field and proposed research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    2. Lindgren, Samantha, 2021. "Cookstove implementation and Education for Sustainable Development: A review of the field and proposed research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.
    4. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    5. Jagger, Pamela & Shively, Gerald, 2014. "Land use change, fuel use and respiratory health in Uganda," Energy Policy, Elsevier, vol. 67(C), pages 713-726.
    6. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    7. Vahlne, Niklas & Ahlgren, Erik O., 2014. "Policy implications for improved cook stove programs—A case study of the importance of village fuel use variations," Energy Policy, Elsevier, vol. 66(C), pages 484-495.
    8. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    9. Christophe Muller & Huijie Yan, 2018. "Household Fuel Use in Rural China," AMSE Working Papers 1808, Aix-Marseille School of Economics, France.
    10. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    11. Atteridge, Aaron & Weitz, Nina, 2017. "A political economy perspective on technology innovation in the Kenyan clean cookstove sector," Energy Policy, Elsevier, vol. 110(C), pages 303-312.
    12. Lee, Soo Min & Kim, Yeon-Su & Jaung, Wanggi & Latifah, Sitti & Afifi, Mansur & Fisher, Larry A., 2015. "Forests, fuelwood and livelihoods—energy transition patterns in eastern Indonesia," Energy Policy, Elsevier, vol. 85(C), pages 61-70.
    13. Bielecki, Christopher & Wingenbach, Gary, 2014. "Rethinking improved cookstove diffusion programs: A case study of social perceptions and cooking choices in rural Guatemala," Energy Policy, Elsevier, vol. 66(C), pages 350-358.
    14. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2014. "A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 580-603.
    15. Manoj Kumar, & Sachin Kumar, & Tyagi, S.K., 2013. "Design, development and technological advancement in the biomass cookstoves: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 265-285.
    16. Guta, Dawit Diriba, 2020. "Determinants of household use of energy-efficient and renewable energy technologies in rural Ethiopia," Technology in Society, Elsevier, vol. 61(C).
    17. Adél Strydom & Josephine Kaviti Musango & Paul K. Currie, 2019. "Conceptualizing Household Energy Metabolism: A Methodological Contribution," Energies, MDPI, vol. 12(21), pages 1-19, October.
    18. Stephanie L. Martin & Jennifer K. Arney & Lisa M. Mueller & Edward Kumakech & Fiona Walugembe & Emmanuel Mugisha, 2013. "Using Formative Research to Design a Behavior Change Strategy to Increase the Use of Improved Cookstoves in Peri-Urban Kampala, Uganda," IJERPH, MDPI, vol. 10(12), pages 1-19, December.
    19. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    20. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:67:y:2014:i:c:p:447-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.