IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v70y2014icp181-193.html
   My bibliography  Save this article

Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion

Author

Listed:
  • Whiting, Andrew
  • Azapagic, Adisa

Abstract

Financial incentives in many European countries have led to a surge in anaerobic digestion (AD) installations to produce heat and/or electricity from biogas. This paper presents the life cycle environmental impacts of a system producing biogas from agricultural wastes by AD and co-generating heat and electricity in a combined heat and power (CHP) plant. The results suggest that this can lead to significant reductions in most impacts compared to fossil-fuel alternatives, including the global warming potential (GWP) which can be reduced by up to 50%. However, the acidification and eutrophication potentials are respectively 25 and 12 times higher than for natural gas CHP. The impacts are influenced by the type and source of feedstock, digestate storage and its application on land. Using energy crops such as maize instead of waste reduces the GWP owing to higher biogas yields, but eight out of 11 impacts increase compared to using waste feedstocks. If digestate is not used to displace artificial fertilisers, the majority of impacts are higher than from natural gas CHP. Some other bioenergy options have lower GWP than energy from biogas, including woodchip CHP plants. Implications for policy are discussed based on the results of the study.

Suggested Citation

  • Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
  • Handle: RePEc:eee:energy:v:70:y:2014:i:c:p:181-193
    DOI: 10.1016/j.energy.2014.03.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mezzullo, William G. & McManus, Marcelle C. & Hammond, Geoff P., 2013. "Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste," Applied Energy, Elsevier, vol. 102(C), pages 657-664.
    2. Jones, Philip & Salter, Andrew, 2013. "Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context," Energy Policy, Elsevier, vol. 62(C), pages 215-225.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    2. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    3. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    4. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    5. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    6. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    7. Chong, Yih Tng & Teo, Kwong Meng & Tang, Loon Ching, 2016. "A lifecycle-based sustainability indicator framework for waste-to-energy systems and a proposed metric of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 797-809.
    8. Rillo, E. & Gandiglio, M. & Lanzini, A. & Bobba, S. & Santarelli, M. & Blengini, G., 2017. "Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant," Energy, Elsevier, vol. 126(C), pages 585-602.
    9. Wei En Tan & Peng Yen Liew & Lian See Tan & Kok Sin Woon & Nor Erniza Mohammad Rozali & Wai Shin Ho & Jamian NorRuwaida, 2022. "Life Cycle Assessment and Techno-Economic Analysis for Anaerobic Digestion as Cow Manure Management System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    10. Wenyao Jin & Xiaochen Xu & Fenglin Yang, 2018. "Application of Rumen Microorganisms for Enhancing Biogas Production of Corn Straw and Livestock Manure in a Pilot-Scale Anaerobic Digestion System: Performance and Microbial Community Analysis," Energies, MDPI, vol. 11(4), pages 1-17, April.
    11. Takata, Miki & Fukushima, Kazuyo & Kawai, Minako & Nagao, Norio & Niwa, Chiaki & Yoshida, Teruaki & Toda, Tatsuki, 2013. "The choice of biological waste treatment method for urban areas in Japan—An environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 557-567.
    12. Shakira R. Hobbs & Tyler M. Harris & William J. Barr & Amy E. Landis, 2021. "Life Cycle Assessment of Bioplastics and Food Waste Disposal Methods," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    13. Congguang Zhang & Jiaming Sun & Jieying Ma & Fuqing Xu & Ling Qiu, 2019. "Environmental Assessment of a Hybrid Solar-Biomass Energy Supplying System: A Case Study," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    14. Freitas, F.F. & Furtado, A.C. & Piñas, J.A.V. & Venturini, O.J. & Barros, R.M. & Lora, E.E.S., 2022. "Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive," Energy, Elsevier, vol. 261(PB).
    15. Iria Soto & Berta Sanchez Fernandez & Manuel Gomez Barbero & Thomas Fellmann & Emilio Rodriguez Cerezo, 2017. "Datasets on technological GHG emissions mitigation options for the agriculture sector," JRC Research Reports JRC104084, Joint Research Centre.
    16. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    17. French, Katherine E., 2019. "Assessing the bioenergy potential of grassland biomass from conservation areas in England," Land Use Policy, Elsevier, vol. 82(C), pages 700-708.
    18. Baboo Lesh Gowreesunker & Savvas Tassou & James Atuonwu, 2018. "Cost-Energy Optimum Pathway for the UK Food Manufacturing Industry to Meet the UK National Emission Targets," Energies, MDPI, vol. 11(10), pages 1-19, October.
    19. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
    20. Pierie, F. & van Someren, C.E.J. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2015. "Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations," Applied Energy, Elsevier, vol. 160(C), pages 456-466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:70:y:2014:i:c:p:181-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.