IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5601-d878301.html
   My bibliography  Save this article

Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions

Author

Listed:
  • Izabela Samson-Bręk

    (Institute of Environmental Protection—National Research Institute, Department of Environmental Chemistry and Risk Assessment, 00-548 Warsaw, Poland)

  • Marlena Owczuk

    (Łukasiewicz Research Network—Automotive Industry Institute, Jagiellońska Str. 55, 03-301 Warsaw, Poland)

  • Anna Matuszewska

    (Łukasiewicz Research Network—Automotive Industry Institute, Jagiellońska Str. 55, 03-301 Warsaw, Poland)

  • Krzysztof Biernat

    (Łukasiewicz Research Network—Automotive Industry Institute, Jagiellońska Str. 55, 03-301 Warsaw, Poland)

Abstract

Life cycle analysis allows for the assessment of the qualitative and quantitative relationship between selected areas of human activity and the consequences for the environment. One of the important areas is the production of electricity and heat, for which the main raw material in Poland is hard coal. An alternative may be to use biogas as a fuel for energy purposes. This article presents the assessment of environmental hazards caused by the production of energy from biogas. The analysis took into account the change of the substrate from maize silage, commonly used in Polish biogas plants, to waste from the domestic agri-food industry. The evaluation covered the acquisition of substrates, their transport to a biogas plant, generation of electricity from biogas, and management of the generated by-products. The analysis was done in terms of both the impact and sensitivity categories. It was found that the emission of pollutants related to the acquisition of the substrate plays a key role and the use of waste for the production of biogas used for energy production brings environmental benefits. The analysis has shown that replacing coal with biogas, regardless of the raw materials used in its production, results in a positive environmental effect, especially in the areas of human health and resources categories. The positive environmental effect of the production of electricity from biogas can be enhanced by switching raw materials from purpose-grown crops to waste from the agri-food industry and agriculture. An important factor influencing the environmental impact is the degree of heat utilization (the greater the percentage of heat utilization, the greater the environmental benefits) and management of all by-products.

Suggested Citation

  • Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5601-:d:878301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agnieszka Jachura & Robert Sekret, 2021. "Life Cycle Assessment of the Use of Phase Change Material in an Evacuated Solar Tube Collector," Energies, MDPI, vol. 14(14), pages 1-18, July.
    2. Liu, Yang & Lyu, Yizheng & Tian, Jinping & Zhao, Jialing & Ye, Ning & Zhang, Yongming & Chen, Lujun, 2021. "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Kristína Zakuciová & Jiří Štefanica & Ana Carvalho & Vladimír Kočí, 2020. "Environmental Assessment of a Coal Power Plant with Carbon Dioxide Capture System Based on the Activated Carbon Adsorption Process: A Case Study of the Czech Republic," Energies, MDPI, vol. 13(9), pages 1-18, May.
    4. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    5. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    6. Ingrao, Carlo & Bacenetti, Jacopo & Adamczyk, Janusz & Ferrante, Valentina & Messineo, Antonio & Huisingh, Donald, 2019. "Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments," Renewable Energy, Elsevier, vol. 136(C), pages 296-307.
    7. Georgios Banias & Maria Batsioula & Charisios Achillas & Sotiris I. Patsios & Konstantinos N. Kontogiannopoulos & Dionysis Bochtis & Nicolas Moussiopoulos, 2020. "A Life Cycle Analysis Approach for the Evaluation of Municipal Solid Waste Management Practices: The Case Study of the Region of Central Macedonia, Greece," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    8. Ciro Florio & Gabriella Fiorentino & Fabiana Corcelli & Sergio Ulgiati & Stefano Dumontet & Joshua Güsewell & Ludger Eltrop, 2019. "A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies," Energies, MDPI, vol. 12(4), pages 1-12, February.
    9. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    10. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    11. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    12. Kari-Anne Lyng & Andreas Brekke, 2019. "Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels," Energies, MDPI, vol. 12(3), pages 1-12, February.
    13. Maria Pergola & Angelo Rita & Alfonso Tortora & Maria Castellaneta & Marco Borghetti & Antonio Sergio De Franchi & Antonio Lapolla & Nicola Moretti & Giovanni Pecora & Domenico Pierangeli & Luigi Toda, 2020. "Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    14. Sabrina Spatari & Alexander Stadel & Paul R. Adler & Saurajyoti Kar & William J. Parton & Kevin B. Hicks & Andrew J. McAloon & Patrick L. Gurian, 2020. "The Role of Biorefinery Co-Products, Market Proximity and Feedstock Environmental Footprint in Meeting Biofuel Policy Goals for Winter Barley-to-Ethanol," Energies, MDPI, vol. 13(9), pages 1-15, May.
    15. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    16. Mezzullo, William G. & McManus, Marcelle C. & Hammond, Geoff P., 2013. "Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste," Applied Energy, Elsevier, vol. 102(C), pages 657-664.
    17. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    18. Mahmoud Sharara & Daesoo Kim & Sammy Sadaka & Greg Thoma, 2019. "Consequential Life Cycle Assessment of Swine Manure Management within a Thermal Gasification Scenario," Energies, MDPI, vol. 12(21), pages 1-15, October.
    19. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    20. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    21. Lucjan Pawłowski & Małgorzata Pawłowska & Cezary A. Kwiatkowski & Elżbieta Harasim, 2021. "The Role of Agriculture in Climate Change Mitigation—A Polish Example," Energies, MDPI, vol. 14(12), pages 1-13, June.
    22. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    2. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    3. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    5. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Deng, Yawen & Ng Tsan Sheng, Adam & Xu, Jiuping, 2023. "Authority-enterprise equilibrium based mixed subsidy mechanism for the value-added treatment of food waste," Energy, Elsevier, vol. 282(C).
    8. Eric Santos-Clotas & Alba Cabrera-Codony & Alba Castillo & Maria J. Martín & Manel Poch & Hèctor Monclús, 2019. "Environmental Decision Support System for Biogas Upgrading to Feasible Fuel," Energies, MDPI, vol. 12(8), pages 1-14, April.
    9. Naquash, Ahmad & Qyyum, Muhammad Abdul & Haider, Junaid & Bokhari, Awais & Lim, Hankwon & Lee, Moonyong, 2022. "State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Gustafsson, M. & Anderberg, S., 2021. "Dimensions and characteristics of biogas policies – Modelling the European policy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Quek, Augustine & Ee, Alvin & Ng, Adam & Wah, Tong Yen, 2018. "Challenges in Environmental Sustainability of renewable energy options in Singapore," Energy Policy, Elsevier, vol. 122(C), pages 388-394.
    12. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    13. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    14. Iris Kral & Gerhard Piringer & Molly K. Saylor & Javier Lizasoain & Andreas Gronauer & Alexander Bauer, 2020. "Life Cycle Assessment of Biogas Production from Unused Grassland Biomass Pretreated by Steam Explosion Using a System Expansion Method," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
    15. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    16. Jones, R.E. & Speight, R.E. & Blinco, J.L. & O'Hara, I.M., 2022. "Biorefining within food loss and waste frameworks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    18. Svetlana Zueva & Andrey A. Kovalev & Yury V. Litti & Nicolò M. Ippolito & Valentina Innocenzi & Ida De Michelis, 2021. "Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia," Energies, MDPI, vol. 14(17), pages 1-8, August.
    19. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    20. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5601-:d:878301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.