IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120304901.html
   My bibliography  Save this article

Dimensions and characteristics of biogas policies – Modelling the European policy landscape

Author

Listed:
  • Gustafsson, M.
  • Anderberg, S.

Abstract

Biogas solutions typically span across several sectors, such as waste handling, energy and transport. While this can be an advantage in comparison to other alternatives, it also creates an intricate policy structure that is challenging to overview, making it difficult to evaluate consequences of different policy changes that might not be directly related to biogas. This article presents an attempt to describe the institutional conditions for biogas solutions in the EU by defining the dimensions and characteristics of policies and policy instruments influencing biogas. A five-dimensional model of biogas policies is proposed: type of policy; administrative area; administrative level; targeted part of the value chain; and continuity and change over time. This reflects the complexity of the conditions for biogas solutions and constitutes a platform for describing, discussing and developing biogas policies. From the proposed model, it becomes clear that biogas policy is a very dispersed and incoherent policy area. Thus, there is an apparent risk that the responsibility for biogas policy is diffuse and has no obvious owner among the involved actors, making the framework of biogas policies patchy and ineffective. This model can contribute to an improved overview of biogas policies, and can be used as a tool for comparing the policy landscapes in different countries.

Suggested Citation

  • Gustafsson, M. & Anderberg, S., 2021. "Dimensions and characteristics of biogas policies – Modelling the European policy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120304901
    DOI: 10.1016/j.rser.2020.110200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    2. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    3. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    4. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    5. Jenny Lieu & Niki Artemis Spyridaki & Rocio Alvarez-Tinoco & Wytze Van der Gaast & Andreas Tuerk & Oscar Van Vliet, 2018. "Evaluating Consistency in Environmental Policy Mixes through Policy, Stakeholder, and Contextual Interactions," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    6. Lönnqvist, Tomas & Anderberg, Stefan & Ammenberg, Jonas & Sandberg, Thomas & Grönkvist, Stefan, 2019. "Stimulating biogas in the transport sector in a Swedish region – An actor and policy analysis with supply side focus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    8. Xue, Shengrong & Song, Jinghui & Wang, Xiaojiao & Shang, Zezhou & Sheng, Chenjing & Li, Chongyuan & Zhu, Yufan & Liu, Jingyu, 2020. "A systematic comparison of biogas development and related policies between China and Europe and corresponding insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Axel Lindfors & Roozbeh Feiz & Mats Eklund & Jonas Ammenberg, 2019. "Assessing the Potential, Performance and Feasibility of Urban Solutions: Methodological Considerations and Learnings from Biogas Solutions," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    10. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    11. Wallace E. Oates & Wallace E. Oates, 2004. "An Essay on Fiscal Federalism," Chapters, in: Environmental Policy and Fiscal Federalism, chapter 22, pages 384-414, Edward Elgar Publishing.
    12. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    13. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    14. Rhodes, Ekaterina & Axsen, Jonn & Jaccard, Mark, 2017. "Exploring Citizen Support for Different Types of Climate Policy," Ecological Economics, Elsevier, vol. 137(C), pages 56-69.
    15. Kim, Jung Eun, 2014. "Energy security and climate change: How oil endowment influences alternative vehicle innovation," Energy Policy, Elsevier, vol. 66(C), pages 400-410.
    16. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    17. Kari-Anne Lyng & Andreas Brekke, 2019. "Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels," Energies, MDPI, vol. 12(3), pages 1-12, February.
    18. Adams, P.W.R. & Mezzullo, W.G. & McManus, M.C., 2015. "Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities," Energy Policy, Elsevier, vol. 87(C), pages 95-109.
    19. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    20. Yasar, Abdullah & Nazir, Saba & Tabinda, Amtul Bari & Nazar, Masooma & Rasheed, Rizwan & Afzaal, Muhammad, 2017. "Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: A case study from Pakistan," Renewable Energy, Elsevier, vol. 108(C), pages 19-25.
    21. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linas Jurgutis & Alvyra Šlepetienė & Jonas Šlepetys & Jurgita Cesevičienė, 2021. "Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer," Energies, MDPI, vol. 14(14), pages 1-14, July.
    2. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    4. Huang, Xianlei & Wang, Shu & Shi, Zuliang & Fang, Linna & Yin, Changbin, 2022. "Challenges and strategies for biogas production in the circular agricultural waste utilization model: A case study in rural China," Energy, Elsevier, vol. 241(C).
    5. Borozan, Dj, 2022. "Detecting a structure in the European energy transition policy instrument mix: What mix successfully drives the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    7. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    2. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    3. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    4. Samant, Shantala & Thakur-Wernz, Pooja & Hatfield, Donald E., 2020. "Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies," Energy Policy, Elsevier, vol. 137(C).
    5. Costantini, Valeria & Crespi, Francesco & Paglialunga, Elena & Sforna, Giorgia, 2020. "System transition and structural change processes in the energy efficiency of residential sector: Evidence from EU countries," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 309-329.
    6. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    7. Sam Aflaki & Syed Abul Basher & Andrea Masini, 2015. "Does Economic Growth Matter? Technology-Push, Demand-Pull and Endogenous Drivers of Innovation in the Renewable Energy Industry," Working Papers hal-02011423, HAL.
    8. Gnekpe, Christian & Plantec, Quentin, 2023. "Regulatory push-pull and technological knowledge dynamics of circular economy innovation," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    9. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    11. Krieger, Bastian & Zipperer, Vera, 2022. "Does green public procurement trigger environmental innovations?," Research Policy, Elsevier, vol. 51(6).
    12. Joana Costa, 2021. "Carrots or Sticks: Which Policies Matter the Most in Sustainable Resource Management?," Resources, MDPI, vol. 10(2), pages 1-21, February.
    13. Gianluca Orsatti & François Perruchas & Davide Consoli & Francesco Quatraro, 2020. "Public Procurement, Local Labor Markets and Green Technological Change. Evidence from US Commuting Zones," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 711-739, April.
    14. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    15. Alessandra Colombelli & Jackie Krafft & Francesco Quatraro, 2021. "Firms’ growth, green gazelles and eco-innovation: evidence from a sample of European firms," Small Business Economics, Springer, vol. 56(4), pages 1721-1738, April.
    16. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    17. Alexandra Rese & Anke Kutschke & Daniel Baier, 2016. "Analyzing The Relative Influence Of Supply Side, Demand Side And Regulatory Factors On The Success Of Collaborative Energy Innovation Projects," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-43, February.
    18. Grafström, Jonas, 2021. "Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector," Ratio Working Papers 351, The Ratio Institute.
    19. Sung, Bongsuk, 2019. "Do government subsidies promote firm-level innovation? Evidence from the Korean renewable energy technology industry," Energy Policy, Elsevier, vol. 132(C), pages 1333-1344.
    20. Orsatti, Gianluca & Quatraro, Francesco & Pezzoni, Michele, 2020. "The antecedents of green technologies: The role of team-level recombinant capabilities," Research Policy, Elsevier, vol. 49(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120304901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.