IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5085-d1096017.html
   My bibliography  Save this article

Carbon Emission Reduction Effects of the Smart City Pilot Policy in China

Author

Listed:
  • Long Qian

    (School of Economics and Management, Anhui Polytechnic University, Wuhu 241000, China)

  • Xiaolin Xu

    (School of Economics and Management, Anhui Polytechnic University, Wuhu 241000, China)

  • Yunjie Zhou

    (School of Economics and Management, Anhui Polytechnic University, Wuhu 241000, China)

  • Ying Sun

    (School of Economics and Management, Anhui Polytechnic University, Wuhu 241000, China)

  • Duoliang Ma

    (School of Economics and Management, Anhui Polytechnic University, Wuhu 241000, China)

Abstract

Carbon emission reduction is an important goal of China’s sustainable economic development. As a new urbanization construction model, the importance of smart city construction for economic growth and innovation is recognized by the academic community. The impact of smart cities on the environment, especially on carbon emission reductions, has yet to be verified. This has implications for the green and low-carbon transformation of China, the realization of the peak carbon and carbon neutrality goals and the effectiveness of smart city pilot policies. For these reasons, this paper utilizes China’s urban panel data, and using the difference-in-difference method, investigates the smart city pilot policy as a quasi-natural experiment of new urbanization construction and its impact on urban carbon emission reductions. The results are summarized as follows: (1) Smart city construction has reduced the carbon emissions of pilot cities by about 4.36% compared with non-pilot cities. (2) The dynamic impact analysis found that the carbon emission reduction effect of smart city construction tends not to be effective until the third year of the implementation of the policy, that the policy effect gradually increases over time, and that its carbon emission reduction dividend has a long-term sustainability. (3) The analysis of the influence mechanisms determined that smart city construction mainly promotes urban carbon emission reduction through three paths, including improving technology innovation capacity, enhancing the attraction of foreign direct investment, and accelerating the upgrading of industrial structure. (4) The heterogeneity analysis indicates that smart city construction has stronger carbon emission reduction effects in the “two control zones”, non-old industrial bases and non-resource-based cities.

Suggested Citation

  • Long Qian & Xiaolin Xu & Yunjie Zhou & Ying Sun & Duoliang Ma, 2023. "Carbon Emission Reduction Effects of the Smart City Pilot Policy in China," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5085-:d:1096017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Xiqian & Lu, Yi & Wu, Mingqin & Yu, Linhui, 2016. "Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China," Journal of Development Economics, Elsevier, vol. 123(C), pages 73-85.
    2. Yigitcanlar, Tan & Kamruzzaman, Md., 2018. "Does smart city policy lead to sustainability of cities?," Land Use Policy, Elsevier, vol. 73(C), pages 49-58.
    3. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. Hanhua Shao & Jixin Cheng & Yuansheng Wang & Xiaoming Li, 2022. "Can Digital Finance Promote Comprehensive Carbon Emission Performance? Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    6. Sam Preston & Muhammad Usman Mazhar & Richard Bull, 2020. "Citizen Engagement for Co-Creating Low Carbon Smart Cities: Practical Lessons from Nottingham City Council in the UK," Energies, MDPI, vol. 13(24), pages 1-21, December.
    7. Chikaraishi, Makoto & Fujiwara, Akimasa & Kaneko, Shinji & Poumanyvong, Phetkeo & Komatsu, Satoru & Kalugin, Andrey, 2015. "The moderating effects of urbanization on carbon dioxide emissions: A latent class modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 302-317.
    8. Lina Liu & Yunyun Zhang & Bei Liu & Pishi Xiu & Lipeng Sun, 2022. "How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    9. Sarah Giest, 2017. "Big data analytics for mitigating carbon emissions in smart cities: opportunities and challenges," European Planning Studies, Taylor & Francis Journals, vol. 25(6), pages 941-957, June.
    10. Gheorghița Dincă & Ana-Angela Milan & Maria Letiția Andronic & Anna-Maria Pasztori & Dragoș Dincă, 2022. "Does Circular Economy Contribute to Smart Cities’ Sustainable Development?," IJERPH, MDPI, vol. 19(13), pages 1-27, June.
    11. Peter M. Clarkson & Yue Li & Matthew Pinnuck & Gordon D. Richardson, 2015. "The Valuation Relevance of Greenhouse Gas Emissions under the European Union Carbon Emissions Trading Scheme," European Accounting Review, Taylor & Francis Journals, vol. 24(3), pages 551-580, September.
    12. Wang, Jinxiu & Deng, Kun, 2022. "Impact and mechanism analysis of smart city policy on urban innovation: Evidence from China," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 574-587.
    13. Xu, Bin & Lin, Boqiang, 2021. "Investigating spatial variability of CO2 emissions in heavy industry: Evidence from a geographically weighted regression model," Energy Policy, Elsevier, vol. 149(C).
    14. Halkos, George E. & Paizanos, Epameinondas Α., 2016. "The effects of fiscal policy on CO2 emissions: Evidence from the U.S.A," Energy Policy, Elsevier, vol. 88(C), pages 317-328.
    15. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    16. P. Heuse & H. Zimmer, 2011. "The Europe 2020 strategy," Economic Review, National Bank of Belgium, issue ii, pages 21-45, September.
    17. Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.
    18. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    19. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
    20. Haider Mahmood & Tarek Tawfik Yousef Alkhateeb & Maham Furqan, 2020. "Oil sector and CO2 emissions in Saudi Arabia: asymmetry analysis," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-10, December.
    21. Contreras, Gabriela & Platania, Federico, 2019. "Economic and policy uncertainty in climate change mitigation: The London Smart City case scenario," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 384-393.
    22. Guo, Qingbin & Wang, Yong & Dong, Xiaobin, 2022. "Effects of smart city construction on energy saving and CO2 emission reduction: Evidence from China," Applied Energy, Elsevier, vol. 313(C).
    23. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    24. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    25. Zhang, Yu & Zhang, Sufang, 2018. "The impacts of GDP, trade structure, exchange rate and FDI inflows on China's carbon emissions," Energy Policy, Elsevier, vol. 120(C), pages 347-353.
    26. Caragliu, Andrea & Del Bo, Chiara F., 2019. "Smart innovative cities: The impact of Smart City policies on urban innovation," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 373-383.
    27. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Qianning & Shahla, Rzayeva & Leyla, Aliyeva & Sevinj, Huseynova, 2023. "Moderating role of carbon emission and institutional stability on renewable energy across developing countries," Renewable Energy, Elsevier, vol. 209(C), pages 413-419.
    2. Gleb Aksenov & Ronglin Li & Qamar Abbas & Houlda Fambo & Sergey Popkov & Vadim Ponkratov & Mikhail Kosov & Izabella Elyakova & Marina Vasiljeva, 2023. "Development of Trade and Financial-Economical Relationships between China and Russia: A Study Based on the Trade Gravity Model," Sustainability, MDPI, vol. 15(7), pages 1-39, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Qingbin & Wang, Yong & Dong, Xiaobin, 2022. "Effects of smart city construction on energy saving and CO2 emission reduction: Evidence from China," Applied Energy, Elsevier, vol. 313(C).
    2. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    3. Yan, Zheming & Sun, Zao & Shi, Rui & Zhao, Minjuan, 2023. "Smart city and green development: Empirical evidence from the perspective of green technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    4. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    5. Eryu Zhang & Xiaoyu He & Peng Xiao, 2022. "Does Smart City Construction Decrease Urban Carbon Emission Intensity? Evidence from a Difference-in-Difference Estimation in China," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    6. Chen, Lifeng & Wang, Kaifeng, 2022. "The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China's cities: Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 110(C).
    7. Yigitcanlar, Tan & Han, Hoon & Kamruzzaman, Md. & Ioppolo, Giuseppe & Sabatini-Marques, Jamile, 2019. "The making of smart cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the best we could build?," Land Use Policy, Elsevier, vol. 88(C).
    8. Chu, Zhen & Cheng, Mingwang & Yu, Ning Neil, 2021. "A smart city is a less polluted city," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    9. Miguel Manjon & Nathalie Crutzen, 2022. "Air quality in smart sustainable cities: target and/or trigger?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 359-386, April.
    10. Chang Zhao & Bing Wang, 2021. "Does China’s Low-Carbon Pilot Policy Promote Foreign Direct Investment? An Empirical Study Based on City-Level Panel Data of China," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    11. Chen, Yi & Long, Xingle & Salman, Muhammad, 2021. "Did the 2014 Nanjing Youth Olympic Games enhance environmental efficiency? New evidence from a quasi-natural experiment," Energy Policy, Elsevier, vol. 159(C).
    12. Chen, Jun, 2023. "Mitigating nitrogen dioxide air pollution: The roles and effect of national smart city pilots in China," Energy, Elsevier, vol. 263(PA).
    13. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    14. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    15. Assad Ullah & Xinshun Zhao & Muhammad Abdul Kamal & Jiajia Zheng, 2022. "Environmental regulations and inward FDI in China: Fresh evidence from the asymmetric autoregressive distributed lag approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 1340-1356, January.
    16. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
    17. Limin Wen & Shufang Sun, 2023. "The Impact of Urban E-Commerce Transformation on Carbon Emissions in Chinese Cities: An Empirical Analysis Based on the PSM-DID Method," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    18. Bai, Caiquan & Liu, Hangjuan & Zhang, Rongjie & Feng, Chen, 2023. "Blessing or curse? Market-driven environmental regulation and enterprises' total factor productivity: Evidence from China's carbon market pilots," Energy Economics, Elsevier, vol. 117(C).
    19. Xingwei Li & Yicheng Huang & Xiangxue Li & Xiang Liu, 2023. "Mechanism of smart city policy on the carbon emissions of construction enterprises in the Yangtze River Economic Belt: a perspective of the PESTEL model and the pollution halo hypothesis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    20. Shaoyan Yang & Duodong Ding & Churen Sun, 2022. "Does Innovative City Policy Improve Green Total Factor Energy Efficiency? Evidence from China," Sustainability, MDPI, vol. 14(19), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5085-:d:1096017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.