IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v63y2018icp39-50.html
   My bibliography  Save this article

Smart city as a tool for sustainable mobility and transport decarbonisation

Author

Listed:
  • Zawieska, Jakub
  • Pieriegud, Jana

Abstract

The sustainable governance of transport systems remains a significant challenge for policy makers worldwide, particularly in cities. Urban areas are developing rapidly from a technological viewpoint, and innovative technologies create new possibilities for smart mobility management. Therefore, this study investigates the relationship between the implementation of the smart city concept and the idea of sustainable transport, particularly with regard to the reduction of transport generated CO2 emissions. The study estimates CO2 emissions for different potential scenarios of development for the Warsaw transport system until 2050 using the United Nations' ForFITS (For Future Inland Transport Systems) model. The study also analyses the additional impact on CO2 emissions of smart city elements as determinants of mobility. The results show that meeting the reduction targets set by the European Union 2011 White Paper on Transport will be challenging, requiring an in-depth transformation of the transport and energy sectors. This study also confirms that smart city solutions can play a crucial role in mitigating transport emissions and meeting reduction goals. The conclusions provide important insights for the design of smart mobility governance and enhance the relationship between transport policy and research.

Suggested Citation

  • Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
  • Handle: RePEc:eee:trapol:v:63:y:2018:i:c:p:39-50
    DOI: 10.1016/j.tranpol.2017.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17304092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2017.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Santis, Roberta & Fasano, Alessandra & Mignolli, Nadia & Villa, Anna, 2014. "Smart city: fact and fiction," MPRA Paper 54536, University Library of Munich, Germany.
    2. Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
    3. Steenbruggen, John & Tranos, Emmanouil & Nijkamp, Peter, 2015. "Data from mobile phone operators: A tool for smarter cities?," Telecommunications Policy, Elsevier, vol. 39(3), pages 335-346.
    4. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    5. Fulton, Lew & Cazzola, Pierpaolo & Cuenot, François, 2009. "IEA Mobility Model (MoMo) and its use in the ETP 2008," Energy Policy, Elsevier, vol. 37(10), pages 3758-3768, October.
    6. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    7. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    8. Fulton, Lew & Miller, Marshall, 2015. "Strategies for Transitioning to Low-Carbon Emission Trucks in the United States," Institute of Transportation Studies, Working Paper Series qt93g5336t, Institute of Transportation Studies, UC Davis.
    9. Bastani, Parisa & Heywood, John B. & Hope, Chris, 2012. "The effect of uncertainty on US transport-related GHG emissions and fuel consumption out to 2050," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 517-548.
    10. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    11. Li, Jun, 2011. "Decoupling urban transport from GHG emissions in Indian cities--A critical review and perspectives," Energy Policy, Elsevier, vol. 39(6), pages 3503-3514, June.
    12. Brand, Christian & Tran, Martino & Anable, Jillian, 2012. "The UK transport carbon model: An integrated life cycle approach to explore low carbon futures," Energy Policy, Elsevier, vol. 41(C), pages 107-124.
    13. Oshiro, Ken & Masui, Toshihiko, 2015. "Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan," Energy Policy, Elsevier, vol. 81(C), pages 215-225.
    14. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    15. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    16. Guo, Bin & Geng, Yong & Franke, Bernd & Hao, Han & Liu, Yaxuan & Chiu, Anthony, 2014. "Uncovering China’s transport CO2 emission patterns at the regional level," Energy Policy, Elsevier, vol. 74(C), pages 134-146.
    17. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    2. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    3. Martin, Niall P.D. & Bishop, Justin D.K. & Choudhary, Ruchi & Boies, Adam M., 2015. "Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis," Applied Energy, Elsevier, vol. 157(C), pages 929-939.
    4. Jieshuang Dong & Yiming Li & Wenxiang Li & Songze Liu, 2022. "CO 2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    5. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    6. Jialin Liu & Yi Zhu & Qun Zhang & Fangyan Cheng & Xi Hu & Xinhong Cui & Lang Zhang & Zhenglin Sun, 2020. "Transportation Carbon Emissions from a Perspective of Sustainable Development in Major Cities of Yangtze River Delta, China," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    7. Linna Li, 2019. "Structure and influencing factors of CO2 emissions from transport sector in three major metropolitan regions of China: estimation and decomposition," Transportation, Springer, vol. 46(4), pages 1245-1269, August.
    8. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    9. Guerrero de la Peña, Ana & Davendralingam, Navindran & Raz, Ali K. & DeLaurentis, Daniel & Shaver, Gregory & Sujan, Vivek & Jain, Neera, 2019. "Projecting line-haul truck technology adoption: How heterogeneity among fleets impacts system-wide adoption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 108-127.
    10. Espinosa Valderrama, Mónica & Cadena Monroy, Ángela Inés & Behrentz Valencia, Eduardo, 2019. "Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector," Energy Policy, Elsevier, vol. 124(C), pages 111-122.
    11. Li, Wenxiang & Bao, Lei & Wang, Luqi & Li, Ye & Mai, Xianmin, 2019. "Comparative evaluation of global low-carbon urban transport," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 14-26.
    12. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    13. Knüpfer, Kristina & Mäll, Martin & Esteban, Miguel & Shibayama, Tomoya, 2021. "Review of mixed-technology vehicle fleet evolution and representation in modelling studies: Policy contexts of Germany and Japan," Energy Policy, Elsevier, vol. 156(C).
    14. Raffaele Salvucci & Stefan Petrović & Kenneth Karlsson & Markus Wråke & Tanu Priya Uteng & Olexandr Balyk, 2019. "Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review," Energies, MDPI, vol. 12(12), pages 1-19, June.
    15. Andrés, Lidia & Padilla, Emilio, 2018. "Driving factors of GHG emissions in the EU transport activity," Transport Policy, Elsevier, vol. 61(C), pages 60-74.
    16. Iacobucci, Riccardo & McLellan, Benjamin & Tezuka, Tetsuo, 2018. "Modeling shared autonomous electric vehicles: Potential for transport and power grid integration," Energy, Elsevier, vol. 158(C), pages 148-163.
    17. Liao, Zitong & Taiebat, Morteza & Xu, Ming, 2021. "Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits," Applied Energy, Elsevier, vol. 302(C).
    18. Travesset-Baro, Oriol & Gallachóir, Brian P.Ó. & Jover, Eric & Rosas-Casals, Marti, 2016. "Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis," Energy Policy, Elsevier, vol. 96(C), pages 78-92.
    19. Pan, Shuai & Fulton, Lewis M. & Roy, Anirban & Jung, Jia & Choi, Yunsoo & Gao, H. Oliver, 2021. "Shared use of electric autonomous vehicles: Air quality and health impacts of future mobility in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:63:y:2018:i:c:p:39-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.