IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt93g5336t.html
   My bibliography  Save this paper

Strategies for Transitioning to Low-Carbon Emission Trucks in the United States

Author

Listed:
  • Fulton, Lew
  • Miller, Marshall

Abstract

This white paper reviews previous studies on prospects for reducing CO2 emissions from trucks. It provides a new investigation into the feasibility of achieving an 80% reduction in CO2-equivalent (CO2e) greenhouse gas (GHG) emissions in the United States and California from trucks by 2050. The authors assess the technological and economic potential of achieving deep market penetrations of low-carbon vehicles and fuels, including vehicles operating on electricity, hydrogen, and biofuels. Achieving such a target for trucks will be very challenging and, if focused on hydrogen and electric zero emission vehicle (ZEV) technologies, will require strong sales growth beginning no later than 2025. View the NCST Project Webpage

Suggested Citation

  • Fulton, Lew & Miller, Marshall, 2015. "Strategies for Transitioning to Low-Carbon Emission Trucks in the United States," Institute of Transportation Studies, Working Paper Series qt93g5336t, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt93g5336t
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/93g5336t.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Kaying & Acha, Salvador & Sunny, Nixon & Shah, Nilay, 2022. "Strategic transport fleet analysis of heavy goods vehicle technology for net-zero targets," Energy Policy, Elsevier, vol. 168(C).
    2. Brown, Austin & Fulton, Lewis & Dominguez-Faus, Rosa, 2019. "California Climate Change Target Setting: A Workshop Report and Recommendations to the State of California Based on the Third California Climate Policy Modeling Dialogue and Workshop," Institute of Transportation Studies, Working Paper Series qt2699b5zh, Institute of Transportation Studies, UC Davis.
    3. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    4. Yueyue Fan & Allen Lee & Nathan Parker & Daniel Scheitrum & Rosa Dominguez-Faus & Amy Myers Jaffe & Kenneth Medlock III, 2017. "Geospatial, Temporal and Economic Analysis of Alternative Fuel Infrastructure: The case of freight and U.S. natural gas markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    5. Gunawan, Tubagus Aryandi & Monaghan, Rory F.D., 2022. "Techno-econo-environmental comparisons of zero- and low-emission heavy-duty trucks," Applied Energy, Elsevier, vol. 308(C).
    6. Guerrero de la Peña, Ana & Davendralingam, Navindran & Raz, Ali K. & DeLaurentis, Daniel & Shaver, Gregory & Sujan, Vivek & Jain, Neera, 2019. "Projecting line-haul truck technology adoption: How heterogeneity among fleets impacts system-wide adoption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 108-127.
    7. Hammond, William & Axsen, Jonn & Kjeang, Erik, 2020. "How to slash greenhouse gas emissions in the freight sector: Policy insights from a technology-adoption model of Canada," Energy Policy, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turner, Elizabeth H. & Thompson, Mark A., 2023. "Further evidence on the financial impact of environmental regulations on the trucking industry," Transport Policy, Elsevier, vol. 133(C), pages 134-143.
    2. Ensieh Shojaeddini & Ben Gilbert, 2023. "Heterogeneity in the Rebound Effect: Evidence from Efficient Lighting Subsidies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 173-217, January.
    3. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.
    4. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Matthias Klumpp, 2016. "To Green or Not to Green: A Political, Economic and Social Analysis for the Past Failure of Green Logistics," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    6. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    7. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    8. Kerstin Robertson & Annika Jägerbrand & Jan R. Eriksson, 2015. "Regional Transport Indicators Used in Sweden for Measurement, Reporting and Verification of CO 2 Emissions," Challenges, MDPI, vol. 6(1), pages 1-16, April.
    9. Muhammad Omer, 2018. "Estimating Elasticity of Transport Fuel Demand in Pakistan," SBP Working Paper Series 96, State Bank of Pakistan, Research Department.
    10. Feyza G. Sahinyazan & Marie‐Ève Rancourt & Vedat Verter, 2021. "Improving Transportation Procurement in the Humanitarian Sector: A Data‐driven Approach for Abnormally Low Bid Detection," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 1082-1109, April.
    11. Matthias Klumpp, 2018. "How to Achieve Supply Chain Sustainability Efficiently? Taming the Triple Bottom Line Split Business Cycle," Sustainability, MDPI, vol. 10(2), pages 1-23, February.
    12. Franco Ruzzenenti, 2018. "The Prism of Elasticity in Rebound Effect Modelling: An Insight from the Freight Transport Sector," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    13. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.
    14. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    15. Figliozzi, Miguel & Saenz, Jesus & Faulin, Javier, 2020. "Minimization of urban freight distribution lifecycle CO2e emissions: Results from an optimization model and a real-world case study," Transport Policy, Elsevier, vol. 86(C), pages 60-68.
    16. Gomez, Juan & Vassallo, José Manuel, 2015. "Evolution over time of heavy vehicle volume in toll roads: A dynamic panel data to identify key explanatory variables in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 282-297.
    17. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    18. Abiye Tob-Ogu & Niraj Kumar & John Cullen & Erica E. F. Ballantyne, 2018. "Sustainability Intervention Mechanisms for Managing Road Freight Transport Externalities: A Systematic Literature Review," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    19. François Des Rosiers & Marius Thériault & Gjin Biba & Marie-Hélène Vandersmissen, 2017. "Greenhouse gas emissions and urban form: Linking households’ socio-economic status with housing and transportation choices," Environment and Planning B, , vol. 44(5), pages 964-985, September.
    20. Matthias Klumpp, 2017. "Do Forwarders Improve Sustainability Efficiency? Evidence from a European DEA Malmquist Index Calculation," Sustainability, MDPI, vol. 9(5), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt93g5336t. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.