IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v44y2017i5p964-985.html
   My bibliography  Save this article

Greenhouse gas emissions and urban form: Linking households’ socio-economic status with housing and transportation choices

Author

Listed:
  • François Des Rosiers
  • Marius Thériault
  • Gjin Biba
  • Marie-Hélène Vandersmissen

Abstract

The main purpose of this research is to provide new insights for reducing greenhouse gas (GHG) emissions linked to transportation, furthering our knowledge on linkages between urban form and economic constraints, travel behaviour, and ability-to-pay of households based on residential choices and property ownership statuses. With Quebec City (Canada) as a case study, it combines an origin-destination (OD) survey, population census data and land use records for 2006 and rests on a series of structural equations models developed at the grid cell level (3,892 cells), which allows for testing for both direct and indirect effects of urban form, accessibility and socio-economic attributes on GHG emissions, households’ transportation and housing financial burdens and motorization rate. As expected, findings suggest that GHG emissions increase with higher incomes (and education), but mainly for homeowners. Tenants displaying a high expenditure-to-income ratio for housing tend to stay close to the city centre (and jobs), thereby minimizing their overall expenditures for transportation while lowering GHG emissions. Potential accessibility by car promotes urban sprawl, thereby contributing to increased GHG emissions. In contrast, increasing residential density and land use mix while providing a better walking access to jobs and local shops tends to favour active transportation, leading to a significant reduction in GHG emissions.

Suggested Citation

  • François Des Rosiers & Marius Thériault & Gjin Biba & Marie-Hélène Vandersmissen, 2017. "Greenhouse gas emissions and urban form: Linking households’ socio-economic status with housing and transportation choices," Environment and Planning B, , vol. 44(5), pages 964-985, September.
  • Handle: RePEc:sae:envirb:v:44:y:2017:i:5:p:964-985
    DOI: 10.1177/0265813516656862
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0265813516656862
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0265813516656862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    2. J. Daniel Khazzoom, 1987. "Energy Saving Resulting from the Adoption of More Efficient Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-89.
    3. Xinyu (Jason) Cao & Patricia L. Mokhtarian & Susan L. Handy, 2008. "Examining the Impacts of Residential Self‐Selection on Travel Behaviour: A Focus on Empirical Findings," Transport Reviews, Taylor & Francis Journals, vol. 29(3), pages 359-395, October.
    4. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2007. "Modeling residential sorting effects to understand the impact of the built environment on commute mode choice," Transportation, Springer, vol. 34(5), pages 557-573, September.
    5. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    6. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    7. Patricia L. Mokhtarian & Michael N. Bagley, 2002. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(2), pages 279-297.
    8. Alan C. Acock, 2013. "Discovering Structural Equation Modeling Using Stata," Stata Press books, StataCorp LP, number dsemus, March.
    9. Joseph S. DeSalvo & Mobinul Huq, 2005. "Mode Choice, Commuting Cost, and Urban Household Behavior," Journal of Regional Science, Wiley Blackwell, vol. 45(3), pages 493-517, August.
    10. Xabier Gainza & Felipe Livert, 2013. "Urban Form and the Environmental Impact of Commuting in a Segregated City, Santiago de Chile," Environment and Planning B, , vol. 40(3), pages 507-522, June.
    11. Sumei Zhang & Jean‐Michel Guldmann, 2010. "Accessibility, Diversity, Environmental Quality and the Dynamics of Intra‐Urban Population and Employment Location," Growth and Change, Wiley Blackwell, vol. 41(1), pages 85-114, March.
    12. Johansson, Bengt, 2009. "Will restrictions on CO2 emissions require reductions in transport demand?," Energy Policy, Elsevier, vol. 37(8), pages 3212-3220, August.
    13. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    14. Francois Des Rosiers & Marius Theriault & Laurent Menetrier, 2005. "Spatial Versus Non-Spatial Determinants of Shopping Center Rents: Modeling Location and Neighborhood-Related Factors," Journal of Real Estate Research, American Real Estate Society, vol. 27(3), pages 293-320.
    15. Wilson, Jeffrey & Spinney, Jamie & Millward, Hugh & Scott, Darren & Hayden, Anders & Tyedmers, Peter, 2013. "Blame the exurbs, not the suburbs: Exploring the distribution of greenhouse gas emissions within a city region," Energy Policy, Elsevier, vol. 62(C), pages 1329-1335.
    16. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    17. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    18. Cao, Xinyu & Mokhtarian, Patricia & Handy, Susan, 2008. "Examining The Impacts of Residential Self-Selection on Travel Behavior: Methodologies and Empirical Findings," Institute of Transportation Studies, Working Paper Series qt08x1k476, Institute of Transportation Studies, UC Davis.
    19. Xinyu Cao & Patricia Mokhtarian & Susan Handy, 2007. "Do changes in neighborhood characteristics lead to changes in travel behavior? A structural equations modeling approach," Transportation, Springer, vol. 34(5), pages 535-556, September.
    20. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    21. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    22. Wendy Bohte & Kees Maat & Bert van Wee, 2009. "Measuring Attitudes in Research on Residential Self‐Selection and Travel Behaviour: A Review of Theories and Empirical Research," Transport Reviews, Taylor & Francis Journals, vol. 29(3), pages 325-357, February.
    23. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    24. Naess, Petter, 2010. "Residential Location, Travel, and Energy Use in the Hangzhou Metropolitan Area," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(3), pages 27-59.
    25. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    26. Brownstone, David & Golob, Thomas F., 2009. "The impact of residential density on vehicle usage and energy consumption," Journal of Urban Economics, Elsevier, vol. 65(1), pages 91-98, January.
    27. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitra, Suman & Yao, Mingqi & Ritchie, Stephen G., 2021. "Gender differences in elderly mobility in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 203-226.
    2. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    3. Jason Cao & Xiaoshu Cao, 2014. "The Impacts of LRT, Neighbourhood Characteristics, and Self-selection on Auto Ownership: Evidence from Minneapolis-St. Paul," Urban Studies, Urban Studies Journal Limited, vol. 51(10), pages 2068-2087, August.
    4. Mitra, Suman K. & Saphores, Jean-Daniel M., 2017. "Carless in California: Green choice or misery?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 1-12.
    5. Bhat, Chandra R. & Astroza, Sebastian & Sidharthan, Raghuprasad & Alam, Mohammad Jobair Bin & Khushefati, Waleed H., 2014. "A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 31-51.
    6. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    7. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    8. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    9. Humphreys, John & Ahern, Aoife, 2019. "Is travel based residential self-selection a significant influence in modal choice and household location decisions?," Transport Policy, Elsevier, vol. 75(C), pages 150-160.
    10. Dillon, Harya S. & Saphores, Jean-Daniel & Boarnet, Marlon G., 2015. "The impact of urban form and gasoline prices on vehicle usage: Evidence from the 2009 National Household Travel Survey," Research in Transportation Economics, Elsevier, vol. 52(C), pages 23-33.
    11. Guan, Xiaodong & Wang, Donggen, 2020. "The multiplicity of self-selection: What do travel attitudes influence first, residential location or work place?," Journal of Transport Geography, Elsevier, vol. 87(C).
    12. Cao, Xinyu Jason, 2019. "Examining the effect of the Hiawatha LRT on auto use in the Twin Cities," Transport Policy, Elsevier, vol. 81(C), pages 284-292.
    13. Macfarlane, Gregory S. & Garrow, Laurie A. & Mokhtarian, Patricia L., 2015. "The influences of past and present residential locations on vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 186-200.
    14. Jingfei Zhang & Lijun Zhang & Yaochen Qin & Xia Wang & Zhicheng Zheng, 2019. "Impact of Residential Self-Selection on Low-Carbon Behavior: Evidence from Zhengzhou, China," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
    15. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    16. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    17. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    18. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    19. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    20. Shen, Qing & Chen, Peng & Pan, Haixiao, 2016. "Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 31-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:44:y:2017:i:5:p:964-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.