IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2865-d163409.html
   My bibliography  Save this article

Impacts of Freight Transport on PM 2.5 Concentrations in China: A Spatial Dynamic Panel Analysis

Author

Listed:
  • Yan Wang

    (School of Statistics, University of International Business and Economics, Beijing 100029, China)

  • Dong Yang

    (China Academy of Transportation Sciences, Beijing 100029, China)

Abstract

Freight transport policies have been developed to reduce air pollution in China. This paper aims to evaluate the impact of a freight modal shift on PM 2.5 concentrations using the panel data of 30 provinces in China over the period 1999–2016. The direct and spillover effects of a freight modal shift on PM 2.5 concentrations in China, as well as the effects of other socioeconomic factors, were estimated by employing spatial dynamic panel data models. In particular, the channel through which the freight modal shift might be beneficial in reducing PM 2.5 concentrations was examined. The results show that PM 2.5 concentrations in China do not only decrease with a modal shift of freight from road to rail in a province, but also and to a larger extent with that in neighboring provinces. However, there exist heterogeneous effects across different regions of China. The interaction between a freight modal shift and energy efficiency may lead to a decrease in the PM 2.5 concentrations, but only in the central and western regions. These findings provide suggestions for government policies directed to sustainable development.

Suggested Citation

  • Yan Wang & Dong Yang, 2018. "Impacts of Freight Transport on PM 2.5 Concentrations in China: A Spatial Dynamic Panel Analysis," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2865-:d:163409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M Ensar Yesilyurt & J Paul Elhorst, 2017. "Impacts of neighboring countries on military expenditures," Journal of Peace Research, Peace Research Institute Oslo, vol. 54(6), pages 777-790, November.
    2. Jiannan Wu & Pan Zhang & Hongtao Yi & Zhao Qin, 2016. "What Causes Haze Pollution? An Empirical Study of PM 2.5 Concentrations in Chinese Cities," Sustainability, MDPI, vol. 8(2), pages 1-14, January.
    3. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    4. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    5. Meng, Jing & Liu, Junfeng & Guo, Shan & Huang, Ye & Tao, Shu, 2016. "The impact of domestic and foreign trade on energy-related PM emissions in Beijing," Applied Energy, Elsevier, vol. 184(C), pages 853-862.
    6. Park, Soonae & Lee, Youngmi, 2011. "Regional model of EKC for air pollution: Evidence from the Republic of Korea," Energy Policy, Elsevier, vol. 39(10), pages 5840-5849, October.
    7. Chuanglin Fang & Haimeng Liu & Guangdong Li & Dongqi Sun & Zhuang Miao, 2015. "Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models," Sustainability, MDPI, vol. 7(11), pages 1-23, November.
    8. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    9. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    10. Halkos, George E. & Paizanos, Epameinondas Α., 2013. "The effect of government expenditure on the environment:An empirical investigation," Ecological Economics, Elsevier, vol. 91(C), pages 48-56.
    11. Geller, Howard & Schaeffer, Roberto & Szklo, Alexandre & Tolmasquim, Mauricio, 2004. "Policies for advancing energy efficiency and renewable energy use in Brazil," Energy Policy, Elsevier, vol. 32(12), pages 1437-1450, August.
    12. Maddison, David, 2006. "Environmental Kuznets curves: A spatial econometric approach," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 218-230, March.
    13. Forkenbrock, David J., 2001. "Comparison of external costs of rail and truck freight transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 321-337, May.
    14. Michael Jakob & Robert Marschinski, 2013. "Interpreting trade-related CO2 emission transfers," Nature Climate Change, Nature, vol. 3(1), pages 19-23, January.
    15. Hosseini, Hossein Mirshojaeian & Kaneko, Shinji, 2013. "Can environmental quality spread through institutions?," Energy Policy, Elsevier, vol. 56(C), pages 312-321.
    16. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliwia Pietrzak & Krystian Pietrzak, 2021. "The Economic Effects of Electromobility in Sustainable Urban Public Transport," Energies, MDPI, vol. 14(4), pages 1-28, February.
    2. Hongyou Lu & Yunchan Zhu & Yu Qi & Jinliang Yu, 2018. "Do Urban Subway Openings Reduce PM 2.5 Concentrations? Evidence from China," Sustainability, MDPI, vol. 10(11), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chagas, André L.S. & Azzoni, Carlos R. & Almeida, Alexandre N., 2016. "A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases," Regional Science and Urban Economics, Elsevier, vol. 59(C), pages 24-36.
    2. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    3. Liu, Yiming & Hao, Yu & Gao, Yixuan, 2017. "The environmental consequences of domestic and foreign investment: Evidence from China," Energy Policy, Elsevier, vol. 108(C), pages 271-280.
    4. Erik Hille & Bernhard Lambernd & Aviral K. Tiwari, 2021. "Any Signs of Green Growth? A Spatial Panel Analysis of Regional Air Pollution in South Korea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 719-760, December.
    5. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    6. Jaeger, William K. & Kolpin, Van & Siegel, Ryan, 2023. "The environmental Kuznets curve reconsidered," Energy Economics, Elsevier, vol. 120(C).
    7. Hao, Yu & Zhang, Zong-Yong & Yang, Chuxiao & Wu, Haitao, 2021. "Does structural labor change affect CO2 emissions? Theoretical and empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    8. Yang, Haisheng & He, Jie & Chen, Shaoling, 2015. "The fragility of the Environmental Kuznets Curve: Revisiting the hypothesis with Chinese data via an “Extreme Bound Analysis”," Ecological Economics, Elsevier, vol. 109(C), pages 41-58.
    9. Yuping Deng & Helian Xu, 2015. "International Direct Investment and Transboundary Pollution: An Empirical Analysis of Complex Networks," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    10. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    11. Meicun Li & Chunmei Mao, 2020. "Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region," IJERPH, MDPI, vol. 17(15), pages 1-12, August.
    12. Xiaosheng Li & Xia Yan & Qingxian An & Ke Chen & Zhen Shen, 2016. "The coordination between China’s economic growth and environmental emission from the Environmental Kuznets Curve viewpoint," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 233-252, August.
    13. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    14. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    15. Lv, Zhike & Gao, Zhenya, 2021. "The effect of corruption on environmental performance: Does spatial dependence play a role?," Economic Systems, Elsevier, vol. 45(2).
    16. Peiqi Hu & Kai Zhou & Haoxi Zhang & Zhong Ma & Jingyuan Li, 2023. "The Cause and Correlation Network of Air Pollution from a Spatial Perspective: Evidence from the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    17. Afees A. Salisu & Lateef O. Akanni & Ahamuefula Ephraim Ogbonna, 2018. "Forecasting CO2 emissions: Does the choice of estimator matter?," Working Papers 045, Centre for Econometric and Allied Research, University of Ibadan.
    18. Aslanidis Nektarios, 2009. "Environmental Kuznets curves for carbon emissions: A critical survey," wp.comunite 0051, Department of Communication, University of Teramo.
    19. Guangyu Luo & Jia-Hsi Weng & Qianxue Zhang & Yu Hao, 2017. "A reexamination of the existence of environmental Kuznets curve for CO2 emissions: evidence from G20 countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1023-1042, January.
    20. Marbuah, George & Amuakwa-Mensah, Franklin, 2017. "Spatial analysis of emissions in Sweden," Energy Economics, Elsevier, vol. 68(C), pages 383-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2865-:d:163409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.