IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9047-d870023.html
   My bibliography  Save this article

Induction of a Consumption Pattern for Ethanol and Gasoline in Brazil

Author

Listed:
  • Aloisio S. Nascimento Filho

    (Gestão e Tecnologia Industrial (PPG GETEC), Centro Universitário SENAI CIMATEC, Salvador 41650-010, Brazil
    Núcleo de Pesquisa Aplicada e Inovação—NPAI, Salvador 41741-020, Brazil)

  • Rafael G. O. dos Santos

    (Núcleo de Pesquisa Aplicada e Inovação—NPAI, Salvador 41741-020, Brazil
    Departamento de Micro Eletrônica, Centro Universitário SENAI CIMATEC, Salvador 41650-010, Brazil)

  • João Gabriel A. Calmon

    (Núcleo de Pesquisa Aplicada e Inovação—NPAI, Salvador 41741-020, Brazil
    Departamento de Micro Eletrônica, Centro Universitário SENAI CIMATEC, Salvador 41650-010, Brazil)

  • Peterson A. Lobato

    (Núcleo de Pesquisa Aplicada e Inovação—NPAI, Salvador 41741-020, Brazil
    Instituto Federal da Bahia—IFBA, Valença 45400-000, Brazil)

  • Marcelo A. Moret

    (Núcleo de Pesquisa Aplicada e Inovação—NPAI, Salvador 41741-020, Brazil
    Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia—UNEB, Salvador 41741-020, Brazil
    Modelagem Computacional e Tecnologia Industrial (PPG MCTI), Centro Universitário SENAI CIMATEC, Salvador 41650-010, Brazil)

  • Thiago B. Murari

    (Gestão e Tecnologia Industrial (PPG GETEC), Centro Universitário SENAI CIMATEC, Salvador 41650-010, Brazil
    Núcleo de Pesquisa Aplicada e Inovação—NPAI, Salvador 41741-020, Brazil)

  • Hugo Saba

    (Núcleo de Pesquisa Aplicada e Inovação—NPAI, Salvador 41741-020, Brazil
    Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia—UNEB, Salvador 41741-020, Brazil
    Modelagem Computacional e Tecnologia Industrial (PPG MCTI), Centro Universitário SENAI CIMATEC, Salvador 41650-010, Brazil)

Abstract

Historically, carbon dioxide emissions from transport have been a globally discussed and analyzed problem. The adoption of flex fuel vehicles designed to run ethanol–gasoline blends is important to mitigate these emissions. The main purpose of this paper is to analyze the impact of the ethanol–gasoline price ratio on different vehicle models, and discuss the opportunities to increase ethanol consumption from this perspective. Our analysis shows that the use of a unique fuel economy ratio for all flex–fuel vehicles in the country significantly reduces the opportunity of some customers to purchase hydrous ethanol. The paper also discusses possible actions to provide adequate information that may increase the possibility of fuelling vehicles with a high-level ethanol blend.

Suggested Citation

  • Aloisio S. Nascimento Filho & Rafael G. O. dos Santos & João Gabriel A. Calmon & Peterson A. Lobato & Marcelo A. Moret & Thiago B. Murari & Hugo Saba, 2022. "Induction of a Consumption Pattern for Ethanol and Gasoline in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-11, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9047-:d:870023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonina Kalinichenko & Valerii Havrysh & Igor Atamanyuk, 2019. "The Acceptable Alternative Vehicle Fuel Price," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Anderson, Soren T., 2012. "The demand for ethanol as a gasoline substitute," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 151-168.
    3. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Ethanol demand under the flex-fuel technology regime in Brazil," Energy Economics, Elsevier, vol. 33(6), pages 1146-1154.
    4. Aloisio S. Nascimento Filho & Hugo Saba & Rafael G. O. dos Santos & João Gabriel A. Calmon & Marcio L. V. Araújo & Eduardo M. F. Jorge & Thiago B. Murari, 2021. "Analysis of Hydrous Ethanol Price Competitiveness after the Implementation of the Fossil Fuel Import Price Parity Policy in Brazil," Sustainability, MDPI, vol. 13(17), pages 1-12, September.
    5. Pouliot, Sébastien & Babcock, Bruce A., 2017. "Feasibility of meeting increased biofuel mandates with E85," Energy Policy, Elsevier, vol. 101(C), pages 194-200.
    6. Salvo, Alberto & Huse, Cristian, 2013. "Build it, but will they come? Evidence from consumer choice between gasoline and sugarcane ethanol," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 251-279.
    7. Danilo Arcentales & Carla Silva, 2019. "Exploring the Introduction of Plug-In Hybrid Flex-Fuel Vehicles in Ecuador," Energies, MDPI, vol. 12(12), pages 1-14, June.
    8. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    9. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    10. Pouliot, Sébastien & Babcock, Bruce A., 2014. "The demand for E85: Geographical location and retail capacity constraints," Energy Economics, Elsevier, vol. 45(C), pages 134-143.
    11. Salvo, Alberto, 2018. "Flexible fuel vehicles, less flexible minded consumers: Price information experiments at the pump," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 194-221.
    12. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    13. Andersson, Linda & Ek, Kristina & Kastensson, Åsa & Wårell, Linda, 2020. "Transition towards sustainable transportation – What determines fuel choice?," Transport Policy, Elsevier, vol. 90(C), pages 31-38.
    14. Kamimura, Arlindo & Sauer, Ildo L., 2008. "The effect of flex fuel vehicles in the Brazilian light road transportation," Energy Policy, Elsevier, vol. 36(4), pages 1574-1576, April.
    15. Yeonbae Kim & Gicheol Jeong & Jiwoon Ahn & Jeong-Dong Lee, 2007. "Consumer preferences for alternative fuel vehicles in South Korea," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 7(4), pages 327-342.
    16. Du, Xiaodong & Carriquiry, Miguel A., 2013. "Flex-fuel vehicle adoption and dynamics of ethanol prices: lessons from Brazil," Energy Policy, Elsevier, vol. 59(C), pages 507-512.
    17. Thiago B. Murari & Aloisio S. Nascimento Filho & Eder J.A.L. Pereira & Paulo Ferreira & Sergio Pitombo & Hernane B.B. Pereira & Alex A.B. Santos & Marcelo A. Moret, 2019. "Comparative Analysis between Hydrous Ethanol and Gasoline C Pricing in Brazilian Retail Market," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
    18. Koç, Mustafa & Sekmen, Yakup & Topgül, Tolga & Yücesu, Hüseyin Serdar, 2009. "The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine," Renewable Energy, Elsevier, vol. 34(10), pages 2101-2106.
    19. Derick David Quintino & Heloisa Lee Burnquist & Paulo Ferreira, 2022. "Relative Prices of Ethanol-Gasoline in the Major Brazilian Capitals: An Analysis to Support Public Policies," Energies, MDPI, vol. 15(13), pages 1-23, June.
    20. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
    21. Cristian Huse, 2018. "Fuel choice and fuel demand elasticities in markets with flex-fuel vehicles," Nature Energy, Nature, vol. 3(7), pages 582-588, July.
    22. Alberto Salvo & Cristian Huse, 2011. "Is Arbitrage Tying the Price of Ethanol to that of Gasoline? Evidence from the Uptake of Flexible-Fuel Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 119-148.
    23. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    24. Pacini, Henrique & Silveira, Semida, 2011. "Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden," Energy Policy, Elsevier, vol. 39(11), pages 6936-6942.
    25. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    26. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersson, Linda & Ek, Kristina & Kastensson, Åsa & Wårell, Linda, 2020. "Transition towards sustainable transportation – What determines fuel choice?," Transport Policy, Elsevier, vol. 90(C), pages 31-38.
    2. Hector M. Nuñez and Jesús Otero, 2017. "Integration in Gasoline and Ethanol Markets in Brazil over Time and Space under the Flex-fuel Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    4. Jiranyakul, Komain, 2022. "Ethanol Use and Gasoline Consumption in Thailand," MPRA Paper 115503, University Library of Munich, Germany.
    5. Pouliot, Sébastien, 2013. "Arbitrage between ethanol and gasoline: evidence from motor fuel consumption in Brazil," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150964, Agricultural and Applied Economics Association.
    6. Sebastien Pouliot & Bruce A. Babcock, 2014. "Impact of Ethanol Mandates on Fuel Prices when Ethanol and Gasoline are Imperfect Substitutes," Center for Agricultural and Rural Development (CARD) Publications 14-wp551, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    7. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    8. Roberto Amaral-Santos & Ariaster Chimeli & Joao Paulo Pessoa, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," Working Papers, Department of Economics 2023_07, University of São Paulo (FEA-USP).
    9. Sébastien Pouliot & Kenneth A Liao & Bruce A Babcock, 2018. "Estimating Willingness to Pay for E85 in the United States Using an Intercept Survey of Flex Motorists," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(5), pages 1486-1509.
    10. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    11. Gabriel E. Lade & James Bushnell, 2019. "Fuel Subsidy Pass-Through and Market Structure: Evidence from the Renewable Fuel Standard," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(3), pages 563-592.
    12. Gabriel E. Lade & James Bushnell, 2016. "Fuel Subsidy Pass-Through and Market Structure: Evidence from the Renewable Fuel Standard," Center for Agricultural and Rural Development (CARD) Publications 16-wp570, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    13. Luo, Jinjing & Moschini, GianCarlo, 2019. "Pass-through of the policy-induced E85 subsidy: Insights from Hotelling's model," Energy Economics, Elsevier, vol. 84(C).
    14. Thiago B. Murari & Aloisio S. Nascimento Filho & Eder J.A.L. Pereira & Paulo Ferreira & Sergio Pitombo & Hernane B.B. Pereira & Alex A.B. Santos & Marcelo A. Moret, 2019. "Comparative Analysis between Hydrous Ethanol and Gasoline C Pricing in Brazilian Retail Market," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
    15. Liao, Kenneth & Pouliot, Sébastien, 2016. "Estimates of the Demand for E85 Using Stated-Preference Data off Revealed-Preference Choices," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236107, Agricultural and Applied Economics Association.
    16. Li, Jing & Stock, James H., 2019. "Cost pass-through to higher ethanol blends at the pump: Evidence from Minnesota gas station data," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 1-19.
    17. de Barros, Marisa Maia & Szklo, Alexandre, 2015. "Petroleum refining flexibility and cost to address the risk of ethanol supply disruptions: The case of Brazil," Renewable Energy, Elsevier, vol. 77(C), pages 20-31.
    18. Salvo, Alberto, 2018. "Flexible fuel vehicles, less flexible minded consumers: Price information experiments at the pump," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 194-221.
    19. Pouliot, Sébastien & Babcock, Bruce A., 2014. "The demand for E85: Geographical location and retail capacity constraints," Energy Economics, Elsevier, vol. 45(C), pages 134-143.
    20. Cristian Huse & Claudio Lucinda, 2014. "The Market Impact and the Cost of Environmental Policy: Evidence from the Swedish Green Car Rebate," Economic Journal, Royal Economic Society, vol. 124(578), pages 393-419, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9047-:d:870023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.