IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v4y2019i1d10.1007_s41247-019-0053-z.html
   My bibliography  Save this article

The Central Role of Energy in the Urban Transition: Global Challenges for Sustainability

Author

Listed:
  • Joseph R. Burger

    (Duke University Population Research Institute (DUPRI))

  • James H. Brown

    (University of New Mexico)

  • John W. Day

    (Louisiana State University)

  • Tatiana P. Flanagan

    (University of New Mexico
    Sandia National Laboratories)

  • Eric D. Roy

    (University of Vermont)

Abstract

The urban transition, the increased ratio of urban to rural population globally and within countries, is a hallmark of the twenty-first century. Our analysis of publicly available data from the World Bank spanning several decades for ~ 195 countries shows that across and within nations over time, per capita Gross Domestic Product (GDP), energy use, and CO2 emissions are lowest in predominantly rural countries (rural > urban pop.), increase rapidly across urbanizing countries (rural ≈ urban pop.), and are highest in the most urban countries (rural

Suggested Citation

  • Joseph R. Burger & James H. Brown & John W. Day & Tatiana P. Flanagan & Eric D. Roy, 2019. "The Central Role of Energy in the Urban Transition: Global Challenges for Sustainability," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-13, March.
  • Handle: RePEc:spr:bioerq:v:4:y:2019:i:1:d:10.1007_s41247-019-0053-z
    DOI: 10.1007/s41247-019-0053-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-019-0053-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-019-0053-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elizabeth Burton, 2000. "The Compact City: Just or Just Compact? A Preliminary Analysis," Urban Studies, Urban Studies Journal Limited, vol. 37(11), pages 1969-2006, October.
    2. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    3. Florian Fizaine Fizaine & Victor Court, 2016. "Energy expenditure,economicgrowth,andtheminimumEROI of society," Post-Print hal-01410625, HAL.
    4. Fridolin Krausmann & Marina Fischer-Kowalski & Heinz Schandl & Nina Eisenmenger, 2008. "The Global Sociometabolic Transition," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 637-656, October.
    5. Canning, Patrick N. & Charles, Ainsley & Huang, Sonja & Polenske, Karen R. & Waters, Arnold, 2010. "Energy Use in the U.S. Food System," Economic Research Report 59381, United States Department of Agriculture, Economic Research Service.
    6. Baabou, Wafaa & Grunewald, Nicole & Ouellet-Plamondon, Claudiane & Gressot, Michel & Galli, Alessandro, 2017. "The Ecological Footprint of Mediterranean cities: Awareness creation and policy implications," Environmental Science & Policy, Elsevier, vol. 69(C), pages 94-104.
    7. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    8. Fizaine, Florian & Court, Victor, 2016. "Energy expenditure, economic growth, and the minimum EROI of society," Energy Policy, Elsevier, vol. 95(C), pages 172-186.
    9. Peter Victor, 2010. "Questioning economic growth," Nature, Nature, vol. 468(7322), pages 370-371, November.
    10. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    11. Warren-Rhodes, Kimberley & Koenig, Albert, 2001. "Ecosystem appropriation by Hong Kong and its implications for sustainable development," Ecological Economics, Elsevier, vol. 39(3), pages 347-359, December.
    12. Roberta Capello & Roberto Camagni, 2000. "Beyond Optimal City Size: An Evaluation of Alternative Urban Growth Patterns," Urban Studies, Urban Studies Journal Limited, vol. 37(9), pages 1479-1496, August.
    13. Canning, Patrick N., 2010. "Fuel for Food: Energy Use in the U.S. Food System," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-6.
    14. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reiner Kümmel & Dietmar Lindenberger, 2020. "Energy in Growth Accounting and the Aggregation of Capital and Output," Biophysical Economics and Resource Quality, Springer, vol. 5(1), pages 1-10, March.
    2. Ignacio Mauleón, 2021. "Aggregated World Energy Demand Projections: Statistical Assessment," Energies, MDPI, vol. 14(15), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    2. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    3. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    4. Poruschi, Lavinia & Ambrey, Christopher L., 2018. "Densification, what does it mean for fuel poverty and energy justice? An empirical analysis," Energy Policy, Elsevier, vol. 117(C), pages 208-217.
    5. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    6. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    7. Carlos E. Gómez-Camacho & Bernardo Ruggeri, 2019. "Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H 2 Production," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    8. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.
    9. Adrien Fabre, 2018. "Evolution of EROIs of Electricity Until 2050: Estimation Using the Input-Output Model THEMIS," Policy Papers 2018.09, FAERE - French Association of Environmental and Resource Economists.
    10. Rafael Ninno Muniz & Stéfano Frizzo Stefenon & William Gouvêa Buratto & Ademir Nied & Luiz Henrique Meyer & Erlon Cristian Finardi & Ricardo Marino Kühl & José Alberto Silva de Sá & Brigida Ramati Per, 2020. "Tools for Measuring Energy Sustainability: A Comparative Review," Energies, MDPI, vol. 13(9), pages 1-27, May.
    11. Leiva, Benjamin & Ramirez, Octavio A. & Schramski, John R., 2019. "A framework to consider energy transfers within growth theory," Energy, Elsevier, vol. 178(C), pages 624-630.
    12. Joel D. Gunn & John W. Day & William J. Folan & Matthew Moerschbaecher, 2019. "Geo-cultural Time: Advancing Human Societal Complexity Within Worldwide Constraint Bottlenecks—A Chronological/Helical Approach to Understanding Human–Planetary Interactions," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-19, September.
    13. Graham Palmer, 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling," Energies, MDPI, vol. 11(4), pages 1-17, April.
    14. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    15. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    16. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    17. Emmanuel Bovari & Victor Court, 2019. "Energy, knowledge, and demo-economic development in the long run: a unified growth model," Working Papers hal-01698755, HAL.
    18. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    19. Boehm, Rebecca & Wilde, Parke E. & Ver Ploeg, Michele & Costello, Christine & Cash, Sean B., 2018. "A Comprehensive Life Cycle Assessment of Greenhouse Gas Emissions from U.S. Household Food Choices," Food Policy, Elsevier, vol. 79(C), pages 67-76.
    20. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:4:y:2019:i:1:d:10.1007_s41247-019-0053-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.