IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v47y2017i3d10.1007_s11123-016-0480-4.html
   My bibliography  Save this article

Sources of airline productivity from carbon emissions: an analysis of operational performance under good and bad outputs

Author

Listed:
  • Boon Liat Lee

    (Queensland University of Technology)

  • Clevo Wilson

    (Queensland University of Technology)

  • Carl A. Pasurka

    (U.S. Environmental Protection Agency (1809T), Office of Policy)

  • Hidemichi Fujii

    (Nagasaki University)

  • Shunsuke Managi

    (Queensland University of Technology
    Kyushu University)

Abstract

This study incorporates carbon dioxide emissions in productivity measurement in the airline industry and examines the determinants of productivity change. For this purpose a two-stage analysis under joint production of good and bad outputs is employed to compare the operational performance of airlines. In the first stage, productivity index are derived using the Luenberger productivity indicator. In the second stage, productivity change scores derived therefrom are regressed using the random-effects Generalized Least Squares to quantify determinants of productivity change. The paper finds low cost carriers and average number of hours flown per aircraft having a positive impact on productivity under joint production model while demand variable negatively impacts on productivity under market model.

Suggested Citation

  • Boon Liat Lee & Clevo Wilson & Carl A. Pasurka & Hidemichi Fujii & Shunsuke Managi, 2017. "Sources of airline productivity from carbon emissions: an analysis of operational performance under good and bad outputs," Journal of Productivity Analysis, Springer, vol. 47(3), pages 223-246, June.
  • Handle: RePEc:kap:jproda:v:47:y:2017:i:3:d:10.1007_s11123-016-0480-4
    DOI: 10.1007/s11123-016-0480-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-016-0480-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-016-0480-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    3. Fujii, Hidemichi & Managi, Shunsuke & Kawahara, Hiromitsu, 2019. "The Pollution Release and Transfer Register System in the U.S. and Japan: An Analysis of Productivity," MPRA Paper 92235, University Library of Munich, Germany.
    4. Ila Alam & Leola Ross & Robin Sickles, 2001. "Time Series Analysis of Strategic Pricing Behavior in the US Airline Industry," Journal of Productivity Analysis, Springer, vol. 16(1), pages 49-62, July.
    5. Inglada, Vicente & Rey, Belen & Rodri­guez-Alvarez, Ana & Coto-Millan, Pablo, 2006. "Liberalisation and efficiency in international air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 95-105, February.
    6. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    7. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    8. Ila Alam & Robin Sickles, 1998. "The Relationship Between Stock Market Returns and Technical Efficiency Innovations: Evidence from the US Airline Industry," Journal of Productivity Analysis, Springer, vol. 9(1), pages 35-51, January.
    9. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    10. A. Assaf, 2011. "A fresh look at the productivity and efficiency changes of UK airlines," Applied Economics, Taylor & Francis Journals, vol. 43(17), pages 2165-2175.
    11. Good, David H. & Roller, Lars-Hendrik & Sickles, Robin C., 1995. "Airline efficiency differences between Europe and the US: Implications for the pace of EC integration and domestic regulation," European Journal of Operational Research, Elsevier, vol. 80(3), pages 508-518, February.
    12. Boon L. Lee & Clevo Wilson & Carl A. Pasurka, Jr, 2015. "The Good, the Bad, and the Efficient: Productivity, Efficiency, and Technical Change in the Airline Industry, 2004-11," Journal of Transport Economics and Policy, University of Bath, vol. 49(2), pages 338-354, April.
    13. Lucas M Z Mendes & Georgina Santos, 2008. "Using Economic Instruments to Address Emissions from Air Transport in the European Union," Environment and Planning A, , vol. 40(1), pages 189-209, January.
    14. Byung M. Jeon & Robin C. Sickles, 2004. "The role of environmental factors in growth accounting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 567-591.
    15. Yagi, Michiyuki & Hidemichi, Fujii & Hoang, Vincent & Managi, Shunsuke, 2015. "Environmental efficiency of energy, materials, and emissions," MPRA Paper 65358, University Library of Munich, Germany.
    16. David Good & M. Nadiri & Lars-Hendrik Röller & Robin Sickles, 1993. "Efficiency and productivity growth comparisons of European and U.S. Air carriers: A first look at the data," Journal of Productivity Analysis, Springer, vol. 4(1), pages 115-125, June.
    17. A. George Assaf & Alexander Josiassen, 2011. "The operational performance of UK airlines: 2002‐2007," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 38(1), pages 5-16, January.
    18. Jean‐Philippe Boussemart & Walter Briec & Kristiaan Kerstens & Jean‐Christophe Poutineau, 2003. "Luenberger and Malmquist Productivity Indices: Theoretical Comparisons and Empirical Illustration," Bulletin of Economic Research, Wiley Blackwell, vol. 55(4), pages 391-405, October.
    19. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
    20. Koutsomanoli-Filippaki, Anastasia & Margaritis, Dimitris & Staikouras, Christos, 2009. "Efficiency and productivity growth in the banking industry of Central and Eastern Europe," Journal of Banking & Finance, Elsevier, vol. 33(3), pages 557-567, March.
    21. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    22. Robert G. Chambers, 2002. "Exact nonradial input, output, and productivity measurement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(4), pages 751-765.
    23. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    24. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    25. Douglas W. Caves & Laurits R. Christensen & Michael W. Tretheway, 1984. "Economies of Density versus Economies of Scale: Why Trunk and Local Service Airline Costs Differ," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 471-489, Winter.
    26. Robert G. Chambers & Rulon D. Pope, 1996. "Aggregate Productivity Measures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1360-1365.
    27. Tim Coelli & Sergio Perelman & Elliot Romano, 1999. "Accounting for Environmental Influences in Stochastic Frontier Models: With Application to International Airlines," Journal of Productivity Analysis, Springer, vol. 11(3), pages 251-273, June.
    28. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    29. Scheraga, Carl A., 2004. "Operational efficiency versus financial mobility in the global airline industry: a data envelopment and Tobit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 383-404, June.
    30. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    31. Robin Sickles & David Good & Lullit Getachew, 2002. "Specification of Distance Functions Using Semi- and Nonparametric Methods with an Application to the Dynamic Performance of Eastern and Western European Air Carriers," Journal of Productivity Analysis, Springer, vol. 17(1), pages 133-155, January.
    32. Greer, Mark R., 2008. "Nothing focuses the mind on productivity quite like the fear of liquidation: Changes in airline productivity in the United States, 2000-2004," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 414-426, February.
    33. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    34. Barbot, Cristina & Costa, Ã lvaro & Sochirca, Elena, 2008. "Airlines performance in the new market context: A comparative productivity and efficiency analysis," Journal of Air Transport Management, Elsevier, vol. 14(5), pages 270-274.
    35. Bhadra, Dipasis, 2009. "Race to the bottom or swimming upstream: Performance analysis of US airlines," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 227-235.
    36. Antonio Peyrache, 2014. "Hicks-Moorsteen versus Malmquist: a connection by means of a radial productivity index," Journal of Productivity Analysis, Springer, vol. 41(3), pages 435-442, June.
    37. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    38. Managi, Shunsuke & Jena, Pradyot Ranjan, 2008. "Environmental productivity and Kuznets curve in India," Ecological Economics, Elsevier, vol. 65(2), pages 432-440, April.
    39. Oum, Tae Hoon & Fu, Xiaowen & Yu, Chunyan, 2005. "New evidences on airline efficiency and yields: a comparative analysis of major North American air carriers and its implications," Transport Policy, Elsevier, vol. 12(2), pages 153-164, March.
    40. Ouellette, Pierre & Petit, Patrick & Tessier-Parent, Louis-Philippe & Vigeant, Stéphane, 2010. "Introducing regulation in the measurement of efficiency, with an application to the Canadian air carriers industry," European Journal of Operational Research, Elsevier, vol. 200(1), pages 216-226, January.
    41. Veronique Distexhe & Sergio Perelman, 1994. "Technical Efficiency and Productivity Growth in an Era of Deregulation: the Case of Airlines," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(IV), pages 669-689, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
    2. Strauss, Jack & Li, Hongchang & Cui, Jinli, 2021. "High-speed Rail's impact on airline demand and air carbon emissions in China," Transport Policy, Elsevier, vol. 109(C), pages 85-97.
    3. Gong, Xiaoxing & Wu, Xiaofan & Luo, Meifeng, 2019. "Company performance and environmental efficiency: A case study for shipping enterprises," Transport Policy, Elsevier, vol. 82(C), pages 96-106.
    4. Hyun-do Choi & Dong-hyun Oh, 2020. "The importance of research teams with diverse backgrounds: Research collaboration in the Journal of Productivity Analysis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 5-19, February.
    5. Shuai Zhang & Xiaoman Zhao & Changwei Yuan & Xiu Wang, 2020. "Technological Bias and Its Influencing Factors in Sustainable Development of China’s Transportation," Sustainability, MDPI, vol. 12(14), pages 1-26, July.
    6. Huang, Fei & Zhou, Dequn & Hu, Jin-Li & Wang, Qunwei, 2020. "Integrated airline productivity performance evaluation with CO2 emissions and flight delays," Journal of Air Transport Management, Elsevier, vol. 84(C).
    7. Zaiwu Gong & Xiaoqing Chen, 2017. "Analysis of Interval Data Envelopment Efficiency Model Considering Different Distribution Characteristics—Based on Environmental Performance Evaluation of the Manufacturing Industry," Sustainability, MDPI, vol. 9(12), pages 1-25, November.
    8. Liu, Wei & Gao, Lixiang & Song, Hang & Huang, Mingdong, 2021. "Factor market distortion, technology change, and green growth in the Chinese civil airline industry," Journal of Asian Economics, Elsevier, vol. 77(C).
    9. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    10. Chiambaretto, Paul & Combe, Emmanuel, 2023. "Business model hybridization but heterogeneous economic performance: Insights from low-cost and legacy carriers in Europe," Transport Policy, Elsevier, vol. 136(C), pages 83-97.
    11. Rungsuriyawiboon, Supawat & Zhang, Yanjie, 2018. "Examining the economic performance of Chinese farms: A dynamic efficiency and adjustment cost approach," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 74-87.
    12. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boon L Lee & Clevo Wilson & Carl A Pasurka, Jr, 2013. "The Good, the Bad and the Efficient: Productivity, efficiency and technical change in the Airline Industry, 2004:2008," School of Economics and Finance Discussion Papers and Working Papers Series 299, School of Economics and Finance, Queensland University of Technology.
    2. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    3. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    4. Barros, Carlos P. & Liang, Qi Bin & Peypoch, Nicolas, 2013. "The technical efficiency of US Airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 139-148.
    5. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    6. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
    7. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    8. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    9. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
    10. Lee, Boon L. & Worthington, Andrew C., 2014. "Technical efficiency of mainstream airlines and low-cost carriers: New evidence using bootstrap data envelopment analysis truncated regression," Journal of Air Transport Management, Elsevier, vol. 38(C), pages 15-20.
    11. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
    12. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    13. Tsionas, Mike G. & Chen, Zhongfei & Wanke, Peter, 2017. "A structural vector autoregressive model of technical efficiency and delays with an application to Chinese airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 1-10.
    14. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
    15. Arjomandi, Amir & Seufert, Juergen Heinz, 2014. "An evaluation of the world's major airlines' technical and environmental performance," Economic Modelling, Elsevier, vol. 41(C), pages 133-144.
    16. Assaf, A. George & Josiassen, Alexander, 2012. "European vs. U.S. airlines: Performance comparison in a dynamic market," Tourism Management, Elsevier, vol. 33(2), pages 317-326.
    17. Heshmati, Almas & C. Kumbhakar, Subal & Kim, Jungsuk, 2016. "Persistent and Transient Efficiency of International Airlines," Working Paper Series in Economics and Institutions of Innovation 444, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    18. Duygun, Meryem & Prior, Diego & Shaban, Mohamed & Tortosa-Ausina, Emili, 2016. "Disentangling the European airlines efficiency puzzle: A network data envelopment analysis approach," Omega, Elsevier, vol. 60(C), pages 2-14.
    19. Hong, Seock-Jin & Kim, Woongyi & Niranjan, Suman, 2023. "Challenges to the air cargo business of combination carriers: Analysis of two major Korean Airlines," Journal of Air Transport Management, Elsevier, vol. 108(C).
    20. Zou, Bo & Elke, Matthew & Hansen, Mark & Kafle, Nabin, 2014. "Evaluating air carrier fuel efficiency in the US airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 306-330.

    More about this item

    Keywords

    Productivity; Luenberger productivity indicator; Pollution abatement; CO2 emissions;
    All these keywords.

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L93 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Air Transportation
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:47:y:2017:i:3:d:10.1007_s11123-016-0480-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.