IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp1046-1054.html
   My bibliography  Save this article

Energy intensity trend explained for Sao Paulo state

Author

Listed:
  • Gandhi, Oktoviano
  • Oshiro, Andre H.
  • Medeiros Costa, Hirdan Katarina de
  • Santos, Edmilson M.

Abstract

A sectorial analysis and a logarithmic mean Divisia Index (LMDI) technique are used in this paper to decompose the energy intensity of the state of Sao Paulo from 1995 to 2012 into the economic activity effect and the energy efficiency effect. This study contributes the following observations: (1) The world energy intensity has decreased steadily, but the energy intensity of the Sao Paulo state has been volatile and has declined 2.3% since 1995. (2) In the period of study, declining energy intensity of the primary and tertiary sectors was observed. In contrast, the energy intensity of the secondary sector has been gradually increasing. (3) The energy efficiency effect was the primary driver of energy intensity change through 2007, and the economic activity effect subsequently had an increasingly more important role in the change. (4) The economic structure remained constant until 2004 when the services sector shift became more significant. It is hypothesized that the increasing energy intensity from 2005 to 2009 was caused by the growth of inefficient sugarcane bagasse consumption.

Suggested Citation

  • Gandhi, Oktoviano & Oshiro, Andre H. & Medeiros Costa, Hirdan Katarina de & Santos, Edmilson M., 2017. "Energy intensity trend explained for Sao Paulo state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1046-1054.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1046-1054
    DOI: 10.1016/j.rser.2016.11.229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116310000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Birol, Fatih & Keppler, Jan Horst, 2000. "Prices, technology development and the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 457-469, June.
    2. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    3. Okajima, Shigeharu & Okajima, Hiroko, 2013. "Analysis of energy intensity in Japan," Energy Policy, Elsevier, vol. 61(C), pages 574-586.
    4. Sampaio, Marcelo Regattieri & Rosa, Luiz Pinguelli & D'Agosto, Márcio de Almeida, 2007. "Ethanol-electric propulsion as a sustainable technological alternative for urban buses in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1514-1529, September.
    5. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    6. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
    7. Gerd Sparovek & Alberto Barretto & Goran Berndes & Sergio Martins & Rodrigo Maule, 2009. "Environmental, land-use and economic implications of Brazilian sugarcane expansion 1996–2006," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(3), pages 285-298, March.
    8. Rego, Erik Eduardo & Parente, Virginia, 2013. "Brazilian experience in electricity auctions: Comparing outcomes from new and old energy auctions as well as the application of the hybrid Anglo-Dutch design," Energy Policy, Elsevier, vol. 55(C), pages 511-520.
    9. Ueki, Yasushi, 2007. "Industrial Development and the Innovation System of the Ethanol Sector in Brazil," IDE Discussion Papers 109, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    10. Martinelli, Luiz A. & Garrett, Rachael & Ferraz, Silvio & Naylor, Rosamond, 2011. "Sugar and ethanol production as a rural development strategy in Brazil: Evidence from the state of São Paulo," Agricultural Systems, Elsevier, vol. 104(5), pages 419-428, June.
    11. Goldemberg, José & Siqueira Prado, Luiz Tadêo, 2011. "The decline of the world's energy intensity," Energy Policy, Elsevier, vol. 39(3), pages 1802-1805, March.
    12. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
    13. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    14. repec:dau:papers:123456789/10972 is not listed on IDEAS
    15. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
    16. Compeán, Roberto Guerrero & Polenske, Karen R., 2011. "Antagonistic bioenergies: Technological divergence of the ethanol industry in Brazil," Energy Policy, Elsevier, vol. 39(11), pages 6951-6961.
    17. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    18. Scaramucci, Jose A. & Perin, Clovis & Pulino, Petronio & Bordoni, Orlando F.J.G. & da Cunha, Marcelo P. & Cortez, Luis A.B., 2006. "Energy from sugarcane bagasse under electricity rationing in Brazil: a computable general equilibrium model," Energy Policy, Elsevier, vol. 34(9), pages 986-992, June.
    19. Baran, Renato & Legey, Luiz Fernando Loureiro, 2013. "The introduction of electric vehicles in Brazil: Impacts on oil and electricity consumption," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 907-917.
    20. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    21. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    22. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    23. Szklo, Alexandre Salem & Schaeffer, Roberto & Edgar Schuller, Marcio & Chandler, William, 2005. "Brazilian energy policies side-effects on CO2 emissions reduction," Energy Policy, Elsevier, vol. 33(3), pages 349-364, February.
    24. Geller, Howard & Schaeffer, Roberto & Szklo, Alexandre & Tolmasquim, Mauricio, 2004. "Policies for advancing energy efficiency and renewable energy use in Brazil," Energy Policy, Elsevier, vol. 32(12), pages 1437-1450, August.
    25. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    26. Gilbert E. Metcalf, 2008. "An Empirical Analysis of Energy Intensity and Its Determinants at the State Level," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-26.
    27. Mielnik, Otavio & Goldemberg, Jose, 2000. "Converging to a common pattern of energy use in developing and industrialized countries," Energy Policy, Elsevier, vol. 28(8), pages 503-508, July.
    28. Liu, Wei & Li, Hong, 2011. "Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China," Energy Policy, Elsevier, vol. 39(7), pages 4134-4143, July.
    29. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    30. Tae Jung & Tae Park, 2000. "Structural Change of the Manufacturing Sector in Korea: Measurement of Real Energy Intensity and CO2 Emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 221-238, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    2. Guang, Fengtao & He, Yongxiu & Wen, Le & Sharp, Basil, 2019. "Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis," Energy, Elsevier, vol. 180(C), pages 989-1000.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Hengyun & Oxley, Les & Gibson, John, 2010. "China's energy economy: A survey of the literature," Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
    2. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
    3. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    4. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    5. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    6. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
    7. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    8. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    9. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    10. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    11. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    12. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    13. Zhang, Jing & Deng, Shihuai & Shen, Fei & Yang, Xinyao & Liu, Guodong & Guo, Hang & Li, Yuanwei & Hong, Xiao & Zhang, Yanzong & Peng, Hong & Zhang, Xiaohong & Li, Li & Wang, Yingjun, 2011. "Modeling the relationship between energy consumption and economy development in China," Energy, Elsevier, vol. 36(7), pages 4227-4234.
    14. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    16. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    17. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    18. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    19. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    20. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1046-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.