IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp989-1000.html
   My bibliography  Save this article

Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis

Author

Listed:
  • Guang, Fengtao
  • He, Yongxiu
  • Wen, Le
  • Sharp, Basil

Abstract

To achieve the energy intensity reduction targets set by the Chinese government policymakers need to understand the key drivers that contribute to regional variations in energy intensity. Understanding regional differences will contribute to the design of more effective energy policies. To facilitate this understanding we estimate a penalized panel quantile regression model that accounts for unobserved individual heterogeneity and distributional heterogeneity across the regions of China. The effects of economic growth, urbanization, foreign direct investment, energy structure, and industrialization, on energy intensity differ across quantiles. The effects of economic growth and foreign direct investment on energy intensity are negative and significant at every quantile. A 1% increase in foreign direct investment decreases energy intensity along the entire conditional distribution, ranging from 7.5% at 10th quantile to 3.7% at 90th quantile. The effects of urbanization and industrialization on energy intensity are positive and significant at every quantile. Moreover, a 1% increase in industrialization lifts energy intensity by 54% at 10th quantile and 33% per cent at 90th quantile. The results from a Shapley decomposition model further show that economic growth is the most prominent factor that contributes to energy intensity differences, following by industrialization, foreign direct investment and energy structure.

Suggested Citation

  • Guang, Fengtao & He, Yongxiu & Wen, Le & Sharp, Basil, 2019. "Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis," Energy, Elsevier, vol. 180(C), pages 989-1000.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:989-1000
    DOI: 10.1016/j.energy.2019.05.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007," Applied Energy, Elsevier, vol. 88(4), pages 1377-1385, April.
    2. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    3. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    4. Feng Dong & Bolin Yu & Jixiong Zhang, 2018. "What Contributes to Regional Disparities of Energy Consumption in China? Evidence from Quantile Regression-Shapley Decomposition Approach," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    5. Filipović, Sanja & Verbič, Miroslav & Radovanović, Mirjana, 2015. "Determinants of energy intensity in the European Union: A panel data analysis," Energy, Elsevier, vol. 92(P3), pages 547-555.
    6. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    7. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
    8. Wesley Burnett, J. & Madariaga, Jessica, 2017. "The convergence of U.S. state-level energy intensity," Energy Economics, Elsevier, vol. 62(C), pages 357-370.
    9. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    10. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    11. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    12. Huijie Yan, 2015. "Provincial energy intensity in China: The role of urbanization," Post-Print hal-01457329, HAL.
    13. Zhu, Huiming & Duan, Lijun & Guo, Yawei & Yu, Keming, 2016. "The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression," Economic Modelling, Elsevier, vol. 58(C), pages 237-248.
    14. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    15. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    16. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    17. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
    18. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    19. Shorrocks, A F, 1982. "Inequality Decomposition by Factor Components," Econometrica, Econometric Society, vol. 50(1), pages 193-211, January.
    20. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    21. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
    22. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    23. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
    24. Yu, Huayi, 2012. "The influential factors of China's regional energy intensity and its spatial linkages: 1988–2007," Energy Policy, Elsevier, vol. 45(C), pages 583-593.
    25. Yihua Yu & Yonghui Zhang & Feng Song, 2015. "World energy intensity revisited: a cluster analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 22(14), pages 1158-1169, September.
    26. Tiago Sequeira & Marcelo Santos, 2018. "Education and Energy Intensity: Simple Economic Modelling and Preliminary Empirical Results," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    27. Lei Jiang & Minhe Ji, 2016. "China’s Energy Intensity, Determinants and Spatial Effects," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    28. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    29. Herrerias, M.J. & Cuadros, A. & Orts, V., 2013. "Energy intensity and investment ownership across Chinese provinces," Energy Economics, Elsevier, vol. 36(C), pages 286-298.
    30. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    31. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    32. Mounir Belloumi & Atef Saad Alshehry, 2016. "The Impact of Urbanization on Energy Intensity in Saudi Arabia," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    33. Wan, Guanghua, 2004. "Accounting for income inequality in rural China: a regression-based approach," Journal of Comparative Economics, Elsevier, vol. 32(2), pages 348-363, June.
    34. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuloğlu, Ayhan, 2017. "The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity," Energy, Elsevier, vol. 133(C), pages 242-256.
    35. Andrés, Lidia & Padilla, Emilio, 2015. "Energy intensity in road freight transport of heavy goods vehicles in Spain," Energy Policy, Elsevier, vol. 85(C), pages 309-321.
    36. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    37. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    38. Gandhi, Oktoviano & Oshiro, Andre H. & Medeiros Costa, Hirdan Katarina de & Santos, Edmilson M., 2017. "Energy intensity trend explained for Sao Paulo state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1046-1054.
    39. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    40. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    41. Lv, Zhike, 2017. "The effect of democracy on CO2 emissions in emerging countries: Does the level of income matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 900-906.
    42. Herrerias, M.J. & Cuadros, A. & Luo, D., 2016. "Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions," Applied Energy, Elsevier, vol. 162(C), pages 1374-1384.
    43. Ni, Zhong-Xin & Wang, Da-Zhong & Xue, Wen-Jun, 2015. "Investor sentiment and its nonlinear effect on stock returns—New evidence from the Chinese stock market based on panel quantile regression model," Economic Modelling, Elsevier, vol. 50(C), pages 266-274.
    44. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    45. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
    46. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    47. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    48. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Le & Guang, Fengtao & Sharp, Basil, 2021. "Dynamics in Aotearoa New Zealand’s energy consumption between 2006/2007 and 2012/2013," Energy, Elsevier, vol. 225(C).
    2. Zhang, Bingqi & Nozawa, Wataru & Managi, Shunsuke, 2021. "Spatial inequality of inclusive wealth in China and Japan," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 164-179.
    3. Tang, Chor Foon & Abosedra, Salah & Naghavi, Navaz, 2021. "Does the quality of institutions and education strengthen the quality of the environment? Evidence from a global perspective," Energy, Elsevier, vol. 218(C).
    4. Sueyoshi, Toshiyuki & Qu, Jingjing & Li, Aijun & Liu, Xiaohong, 2021. "A new approach for evaluating technology inequality and diffusion barriers: The concept of efficiency Gini coefficient and its application in Chinese provinces," Energy, Elsevier, vol. 235(C).
    5. Osarumwense Osabuohien-Irabor & Igor Mikhailovich Drapkin, 2022. "The Impact of Technological Innovation on Energy Consumption in OECD Economies: the role of Outward Foreign Direct Investment and International Trade Openness," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 317-333, July.
    6. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).
    7. Zhang, Wenyue & Li, Jianan & Sun, Chuanwang, 2022. "The impact of OFDI reverse technology spillovers on China's energy intensity: Analysis of provincial panel data," Energy Economics, Elsevier, vol. 116(C).
    8. Pan, Xiongfeng & Guo, Shucen & Han, Cuicui & Wang, Mengyang & Song, Jinbo & Liao, Xianchun, 2020. "Influence of FDI quality on energy efficiency in China based on seemingly unrelated regression method," Energy, Elsevier, vol. 192(C).
    9. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
    10. Pan, Xiongfeng & Uddin, Md. Kamal & Saima, Umme & Jiao, Zhiming & Han, Cuicui, 2019. "How do industrialization and trade openness influence energy intensity? Evidence from a path model in case of Bangladesh," Energy Policy, Elsevier, vol. 133(C).
    11. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    12. Mouhamadou Lamine DIAL, 2022. "Les effets de l’urbanisation et de l’industrialisation sur l’intensité énergétique dans la CEDEAO," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 56, pages 41-59.
    13. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    14. Yu, Zhang & Khan, Syed Abdul Rehman & Ponce, Pablo & Lopes de Sousa Jabbour, Ana Beatriz & Chiappetta Jabbour, Charbel Jose, 2022. "Factors affecting carbon emissions in emerging economies in the context of a green recovery: Implications for sustainable development goals," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    15. Ruyin Long & Qin Zhang & Hong Chen & Meifen Wu & Qianwen Li, 2020. "Measurement of the Energy Intensity of Human Well-Being and Spatial Econometric Analysis of Its Influencing Factors," IJERPH, MDPI, vol. 17(1), pages 1-21, January.
    16. Panait, Mirela & Apostu, Simona Andreea & Vasile, Valentina & Vasile, Razvan, 2022. "Is energy efficiency a robust driver for the new normal development model? A Granger causality analysis," Energy Policy, Elsevier, vol. 169(C).
    17. Wang, Feng & Wu, Min & Wang, Jingcao, 2023. "Can increasing economic complexity improve China's green development efficiency?," Energy Economics, Elsevier, vol. 117(C).
    18. Li, Yaya & Cobbinah, Joana & Abban, Olivier Joseph & Veglianti, Eleonora, 2023. "Does green manufacturing technology innovation decrease energy intensity for sustainable development?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1010-1025.
    19. Dan Yu & Bart Dewancker & Fanyue Qian, 2020. "The Identification and Rebound Effect Evaluation of Equipment Energy Efficiency Improvement Policy: A Case Study on Japan’s Top Runner Policy," Energies, MDPI, vol. 13(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    2. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    3. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    4. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    5. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    6. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    7. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    8. Pan, Xiongfeng & Uddin, Md. Kamal & Saima, Umme & Jiao, Zhiming & Han, Cuicui, 2019. "How do industrialization and trade openness influence energy intensity? Evidence from a path model in case of Bangladesh," Energy Policy, Elsevier, vol. 133(C).
    9. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
    10. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    11. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    12. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    13. Dargahi, Hassan & Khameneh, Kazem Biabany, 2019. "Energy intensity determinants in an energy-exporting developing economy: Case of Iran," Energy, Elsevier, vol. 168(C), pages 1031-1044.
    14. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
    15. Trinh, Hai Hong & Sharma, Gagan Deep & Tiwari, Aviral Kumar & Vo, Diem Thi Hong, 2022. "Examining the heterogeneity of financial development in the energy-environment nexus in the era of climate change: Novel evidence around the world," Energy Economics, Elsevier, vol. 116(C).
    16. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
    17. Lin, Boqiang & Zhu, Junpeng, 2021. "Impact of China's new-type urbanization on energy intensity: A city-level analysis," Energy Economics, Elsevier, vol. 99(C).
    18. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    19. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    20. Tafadzwa Ruzive & Thando Mkhombo & Simbarashe Mhaka & Nomahlubi Mavikela & Andrew Phiri, 2019. "Electricity Intensity and Unemployment in South Africa: A Quantile Regression Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 31-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:989-1000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.