IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4591-d187872.html
   My bibliography  Save this article

Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China

Author

Listed:
  • Hongyun Han

    (Center for Agricultural and Rural Development, School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

  • Shu Wu

    (Center for Agricultural and Rural Development, School of Public Affairs, Zhejiang University, Hangzhou 310058, China
    School of Management, Zhejiang University, Hangzhou 310058, China)

Abstract

China’s agricultural structure has undergone significant changes for the past four decades, mainly presenting as the fall of sown proportion of grain crops and the rise of vegetables, as has its energy consumption. Employing the panel data on 30 provinces during 1991–2016, this paper empirically explores the impact of agricultural structure changes (ASC) on the energy intensity of agricultural production (EIAP), direct energy intensity of agricultural production (DEIAP) and indirect energy intensity of agricultural production (IEIAP) in China. Besides, the regional heterogeneity of such impact is examined. The results show that: (1) ASC increases EIAP and IEIAP significantly, while ASC decreases DEIAP, which is explained by the structural effect and different planting modes of different crops; (2) the impact in the three administrative regions is similar to national situation, except the impact of ASC on DEIAP in the West Region, which is explained by regional differences of vegetable mechanization; (3) the result of the six vegetable production regions reveals greater regional heterogeneity, and this is attributed to the scale economy effect and the incremental effect of vegetable mechanization; and (4) fuel price, income, agricultural labor, old dependency ratio, and fiscal expenditure have different but significant impacts on EIAP, DEIAP, and IEIAP. Finally, some policy implications are given.

Suggested Citation

  • Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4591-:d:187872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adom, Philip Kofi, 2015. "Determinants of energy intensity in South Africa: Testing for structural effects in parameters," Energy, Elsevier, vol. 89(C), pages 334-346.
    2. William Adams & Liran Einav & Jonathan Levin, 2009. "Liquidity Constraints and Imperfect Information in Subprime Lending," American Economic Review, American Economic Association, vol. 99(1), pages 49-84, March.
    3. Okajima, Shigeharu & Okajima, Hiroko, 2013. "Analysis of energy intensity in Japan," Energy Policy, Elsevier, vol. 61(C), pages 574-586.
    4. Hua Liao & Ce Wang & Zhi-Shuang Zhu & Xiao-Wei Ma, 2012. "Structural decomposition analysis on energy intensity changes at regional level," CEEP-BIT Working Papers 40, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    6. Lu, Xun & White, Halbert, 2014. "Robustness checks and robustness tests in applied economics," Journal of Econometrics, Elsevier, vol. 178(P1), pages 194-206.
    7. Liu, Ming-Hua & Margaritis, Dimitris & Zhang, Yang, 2013. "Market-driven coal prices and state-administered electricity prices in China," Energy Economics, Elsevier, vol. 40(C), pages 167-175.
    8. Huijie Yan, 2015. "Provincial energy intensity in China: The role of urbanization," Post-Print hal-01457329, HAL.
    9. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    10. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    11. Huang, Jikun & Rozelle, Scott, 1997. "Technological Change: The Re-Discovery of the Engine of Productivity Growth in China's Rural Economy," 1997 Occasional Paper Series No. 7 198197, International Association of Agricultural Economists.
    12. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
    13. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
    14. Jialing Yu & Jian Wu, 2018. "The Sustainability of Agricultural Development in China: The Agriculture–Environment Nexus," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    15. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin, 2017. "Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions," Energy Policy, Elsevier, vol. 105(C), pages 108-119.
    16. Fei, Rilong & Lin, Boqiang, 2017. "Estimates of energy demand and energy saving potential in China's agricultural sector," Energy, Elsevier, vol. 135(C), pages 865-875.
    17. Jin Yang & Zuhui Huang & Xiaobo Zhang & Thomas Reardon, 2013. "The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1245-1251.
    18. Chang, Jie & Wu, Xu & Liu, Anqin & Wang, Yan & Xu, Bin & Yang, Wu & Meyerson, Laura A. & Gu, Baojing & Peng, Changhui & Ge, Ying, 2011. "Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China," Ecological Economics, Elsevier, vol. 70(4), pages 740-748, February.
    19. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
    20. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
    21. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng & Wu, Junlong, 2009. "Research on the energy-saving effect of energy policies in China: 1982-2006," Energy Policy, Elsevier, vol. 37(7), pages 2475-2480, July.
    22. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    23. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    24. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
    25. Yu, Huayi, 2012. "The influential factors of China's regional energy intensity and its spatial linkages: 1988–2007," Energy Policy, Elsevier, vol. 45(C), pages 583-593.
    26. Yuxiang, Karl & Chen, Zhongchang, 2010. "Government expenditure and energy intensity in China," Energy Policy, Elsevier, vol. 38(2), pages 691-694, February.
    27. Qi Li & Wanjiang Yang & Kai Li, 2018. "Role of Social Learning in the Diffusion of Environmentally-Friendly Agricultural Technology in China," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    28. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    29. Fan, Ruguo & Luo, Ming & Zhang, Pengfei, 2016. "A study on evolution of energy intensity in China with heterogeneity and rebound effect," Energy, Elsevier, vol. 99(C), pages 159-169.
    30. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    31. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    32. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    33. Zhang, Hongyuan & Hu, Kelin & Zhang, Lijuan & Ji, Yanzhi & Qin, Wei, 2019. "Exploring optimal catch crops for reducing nitrate leaching in vegetable greenhouse in North China," Agricultural Water Management, Elsevier, vol. 212(C), pages 273-282.
    34. Justin Yifu Lin, 1995. "Endowments, Technology, and Factor Markets: A Natural Experiment of Induced Institutional Innovation from China's Rural Reform," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 231-242.
    35. Ram, Rati, 1986. "Government Size and Economic Growth: A New Framework and Some Evidencefrom Cross-Section and Time-Series Data," American Economic Review, American Economic Association, vol. 76(1), pages 191-203, March.
    36. Michel, Bernhard, 2013. "Does offshoring contribute to reducing domestic air emissions? Evidence from Belgian manufacturing," Ecological Economics, Elsevier, vol. 95(C), pages 73-82.
    37. Zou, Baoling & Mishra, Ashok K. & Luo, Biliang, 2018. "Aging population, farm succession, and farmland usage: Evidence from rural China," Land Use Policy, Elsevier, vol. 77(C), pages 437-445.
    38. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    39. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    40. Chu Wei & Jinlan Ni & Manhong Shen, 2009. "Empirical Analysis of Provincial Energy Efficiency in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 17(5), pages 88-103, September.
    41. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    42. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    43. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    44. Ito, Junichi, 2010. "Inter-regional difference of agricultural productivity in China: Distinction between biochemical and machinery technology," China Economic Review, Elsevier, vol. 21(3), pages 394-410, September.
    45. Gong, Binlei, 2018. "Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015," Journal of Development Economics, Elsevier, vol. 132(C), pages 18-31.
    46. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    47. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    48. Herrerias, M.J. & Cuadros, A. & Luo, D., 2016. "Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions," Applied Energy, Elsevier, vol. 162(C), pages 1374-1384.
    49. Farajzadeh, Zakariya & Nematollahi, Mohammad Amin, 2018. "Energy intensity and its components in Iran: Determinants and trends," Energy Economics, Elsevier, vol. 73(C), pages 161-177.
    50. Lin, Justin Yifu, 1992. "Rural Reforms and Agricultural Growth in China," American Economic Review, American Economic Association, vol. 82(1), pages 34-51, March.
    51. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    52. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
    53. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2017. "Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis," Energy Economics, Elsevier, vol. 62(C), pages 347-356.
    54. Nan Li & Hailin Mu & Huanan Li & Shusen Gui, 2012. "Diesel Consumption of Agriculture in China," Energies, MDPI, vol. 5(12), pages 1-24, December.
    55. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    56. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    57. Haiyan Zhang & Michael L. Lahr, 2014. "Can The Carbonizing Dragon Be Domesticated? Insights From A Decomposition Of Energy Consumption And Intensity In China, 1987--2007," Economic Systems Research, Taylor & Francis Journals, vol. 26(2), pages 119-140, June.
    58. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    59. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    2. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    3. Zhen Shi & Huinan Huang & Yingju Wu & Yung-Ho Chiu & Shijiong Qin, 2020. "Climate Change Impacts on Agricultural Production and Crop Disaster Area in China," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    4. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    5. Jianxu Liu & Heng Wang & Sanzidur Rahman & Songsak Sriboonchitta, 2021. "Energy Efficiency, Energy Conservation and Determinants in the Agricultural Sector in Emerging Economies," Agriculture, MDPI, vol. 11(8), pages 1-18, August.
    6. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    7. Yuanzhi Guo & Jieyong Wang, 2021. "Identifying the Determinants of Nongrain Farming in China and Its Implications for Agricultural Development," Land, MDPI, vol. 10(9), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    2. Guang, Fengtao & He, Yongxiu & Wen, Le & Sharp, Basil, 2019. "Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis," Energy, Elsevier, vol. 180(C), pages 989-1000.
    3. Jiang, Xuemei & Duan, Yuwan & Green, Christopher, 2017. "Regional disparity in energy intensity of China and the role of industrial and export structure," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 209-218.
    4. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    5. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    6. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    7. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    8. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    9. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    10. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    11. Pan, Xiongfeng & Uddin, Md. Kamal & Saima, Umme & Jiao, Zhiming & Han, Cuicui, 2019. "How do industrialization and trade openness influence energy intensity? Evidence from a path model in case of Bangladesh," Energy Policy, Elsevier, vol. 133(C).
    12. Huang, Junbing & Chen, Xiang, 2020. "Domestic R&D activities, technology absorption ability, and energy intensity in China," Energy Policy, Elsevier, vol. 138(C).
    13. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
    14. Yanli Ji & Jie Xue & Zitian Fu, 2022. "Sustainable Development of Economic Growth, Energy-Intensive Industries and Energy Consumption: Empirical Evidence from China’s Provinces," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    15. Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).
    16. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    17. Shuxing Chen & Xiangyang Du & Junbing Huang & Cheng Huang, 2019. "The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    18. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    19. Huang, Junbing & Lai, Yali & Wang, Yajun & Hao, Yu, 2020. "Energy-saving research and development activities and energy intensity in China: A regional comparison perspective," Energy, Elsevier, vol. 213(C).
    20. Liangliang Liu & Wenqing Zhang, 2022. "Vertical fiscal imbalance and energy intensity in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 509-526, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4591-:d:187872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.